# NOT RUN {
library("flexsurv")
# Simulation data
strategies <- data.frame(strategy_id = c(1, 2, 3))
patients <- data.frame(patient_id = seq(1, 3),
age = c(45, 50, 60),
female = c(0, 0, 1))
states <- data.frame(state_id = seq(1, 3),
state_name = paste0("state", seq(1, 3)))
hesim_dat <- hesim_data(strategies = strategies,
patients = patients,
states = states)
n_samples <- 3
# Survival models
surv_est_data <- psm4_exdata$survival
fit1 <- flexsurv::flexsurvreg(Surv(endpoint1_time, endpoint1_status) ~ age,
data = surv_est_data, dist = "exp")
fit2 <- flexsurv::flexsurvreg(Surv(endpoint2_time, endpoint2_status) ~ age,
data = surv_est_data, dist = "exp")
fit3 <- flexsurv::flexsurvreg(Surv(endpoint3_time, endpoint3_status) ~ age,
data = surv_est_data, dist = "exp")
fits <- flexsurvreg_list(fit1, fit2, fit3)
surv_input_data <- expand(hesim_dat, by = c("strategies", "patients"))
psm_curves <- create_PsmCurves(fits, input_data = surv_input_data,
bootstrap = TRUE, est_data = surv_est_data,
n = n_samples)
# Cost model(s)
cost_input_data <- expand(hesim_dat, by = c("strategies", "patients", "states"))
fit_costs_medical <- stats::lm(costs ~ female + state_name,
data = psm4_exdata$costs$medical)
psm_costs_medical <- create_StateVals(fit_costs_medical,
input_data = cost_input_data,
n = n_samples)
# Utility model
utility_tbl <- stateval_tbl(tbl = data.frame(state_id = states$state_id,
min = psm4_exdata$utility$lower,
max = psm4_exdata$utility$upper),
dist = "unif",
hesim_data = hesim_dat)
psm_utility <- create_StateVals(utility_tbl, n = n_samples)
# Partitioned survival decision model
psm <- Psm$new(survival_models = psm_curves,
utility_model = psm_utility,
cost_models = list(medical = psm_costs_medical))
psm$sim_survival(t = seq(0, 5, .05))
psm$sim_stateprobs()
psm$sim_costs(dr = .03)
head(psm$costs_)
head(psm$sim_qalys(dr = .03)$qalys_)
# }
Run the code above in your browser using DataLab