Last chance! 50% off unlimited learning
Sale ends in
data.table
Creates a data.table
that combines the transition probability matrices
and ID variables from a tparams_transprobs
object. This is often useful for
debugging.
# S3 method for tparams_transprobs
as.data.table(x, ..., prefix = "prob_", sep = "_", long = FALSE)
The output always contains columns for the ID variables and the
transition probabilities, but the form depends on on the long
argument.
If FALSE
, then a data.table
with one row for each transition probability
matrix is returned; otherwise, the data.table
contains one row for each
transition and columns from
(the state being transitioned from) and
to
(the state being transitioned to) are added.
A tparams_transprobs
object.
Currently unused.
Arguments passed to tpmatrix_names()
for naming
the transition probability columns. The states
argument is based on
the column names (i.e., names of the second dimension) of the $value
element of x
; if NULL
, then states are named s1
, ..., sh
where h is
the number of states. Only used if long = FALSE
.
If TRUE
, then output is returned in a longer format with
one row for each transition; if FALSE
, then each row contains an entire
flattened transition probability matrix.
tparams_transprobs()
# Create tparams_transprobs object
hesim_dat <- hesim_data(strategies = data.frame(strategy_id = 1:2),
patients = data.frame(patient_id = 1:3))
input_data <- expand(hesim_dat, by = c("strategies", "patients"))
tpmat_id <- tpmatrix_id(input_data, n_samples = 2)
p_12 <- runif(nrow(tpmat_id), .6, .7) +
.05 * (tpmat_id$strategy_id == 2)
tpmat <- tpmatrix(
C, p_12,
0, 1
)
tprobs <- tparams_transprobs(tpmat, tpmat_id)
# Convert to data.table in "wide" format
as.data.table(tprobs)
as.data.table(tprobs, prefix = "")
as.data.table(tprobs, prefix = "", sep = ".")
# Convert to data.table in "long: format
as.data.table(tprobs, long = TRUE)
Run the code above in your browser using DataLab