CEEMD(sig, tt, noise.amp, trials, verbose = TRUE, spectral.method = "arctan", diff.lag = 1, tol = 5, max.sift = 200, stop.rule = "type5", boundary = "wave", sm = "none", smlevels = c(1), spar = NULL, max.imf = 100, interm = NULL, noise.type = "gaussian", noise.array = NULL)
sig
Sig2IMF
.Sig2IMF
.Sig2IMF
.Sig2IMF
.Sig2IMF
.Sig2IMF
.Sig2IMF
.Sig2IMF
.Sig2IMF
.Sig2IMF
.Sig2IMF
.gaussian
, produce a Gaussian noise series with length length(sig)
and standard deviation noise.amp
.
If uniform
, produce a uniform random distribution with length length(sig)
and maximum absolute value of noise.amp
.
If custom
, then use a custom noise array as defined in input parameter noise.array
(see below).noise.type = "custom"
, this array must be a TRIALS x LENGTH(TT) collection of time series to be used in the place of uniform or gaussian noise.
Each row in the array corresponds to the noise series added for that particular trial during the CEEMD run.
By default, noise.array = NULL
.EEMD
, Sig2IMF
, PlotIMFs
.
## Not run:
#
# data(PortFosterEvent)
# noise.amp <- 6.4e-07
# trials <- 100
#
# ceemd.result <- CEEMD(sig, tt, noise.amp, trials)
# PlotIMFs(ceemd.result, imf.list = 1:6, time.span = c(5, 10))
# ## End(Not run)
Run the code above in your browser using DataLab