Learn R Programming

highfrequency (version 0.5.3)

minRQ: An estimator of integrated quarticity from applying the minimum operator on blocks of two returns.

Description

Function returns the minRQ, defined in Andersen et al. (2012).

Assume there is \(N\) equispaced returns in period \(t\). Let \(r_{t,i}\) be a return (with \(i=1, \ldots,N\)) in period \(t\).

Then, the minRQ is given by $$ \mbox{minRQ}_{t}=\frac{\pi N}{3 \pi - 8} \left(\frac{N}{N-1}\right) \sum_{i=1}^{N-1} \mbox{min}(|r_{t,i}| ,|r_{t,i+1}|)^4 $$

Usage

minRQ (rdata,align.by=NULL,align.period=NULL,makeReturns=FALSE,...)

Arguments

rdata

a zoo/xts object containing all returns in period t for one asset.

align.by

a string, align the tick data to "seconds"|"minutes"|"hours"

align.period

an integer, align the tick data to this many [seconds|minutes|hours].

makeReturns

boolean, should be TRUE when rdata contains prices instead of returns. FALSE by default.

...

additional arguments.

Value

numeric

References

Andersen, T. G., D. Dobrev, and E. Schaumburg (2012). Jump-robust volatility estimation using nearest neighbor truncation. Journal of Econometrics, 169(1), 75- 93.

Examples

Run this code
# NOT RUN {
data(sample_tdata)
minRQ(rdata= sample_tdata$PRICE, align.by= "minutes", align.period =5, makeReturns= TRUE)
minRQ
# }

Run the code above in your browser using DataLab