Function returns the realized quad-power variation, defined in Andersen et al. (2012).
Assume there is \(N\) equispaced returns in period \(t\). Let \(r_{t,i}\) be a return (with \(i=1, \ldots,N\)) in period \(t\).
Then, the rQPVar is given by
$$
\mbox{rQPVar}_{t}=\frac{N}{N-3} \left( 2^{1/4} \frac{\Gamma \left(3/4\right)}{ \Gamma \left(1/2\right)} \right)^{-4} \sum_{i=4}^{N} \mbox({|r_{t,i}|}^{1/2} {|r_{t,i-1}|}^{1/2} {|r_{t,i-2}|}^{1/2} {|r_{t,i-3}|}^{1/2})
$$