Learn R Programming

hisemi (version 1.1-0)

EMupdate: Utility function performing EM algorithm updates

Description

Utility function performing EM algorithm updates for penLik.EMNewton

Usage

EMupdate(starts, nLogLik.pen, optim.method, H, tstat, df, dt0, 
        spar.Pen.mat, em.iter.max = 10, em.beta.iter.max = 1, 
        scale.conv = 0.001, lfdr.conv = 0.001, 
        NPLL.conv = 0.001, debugging = FALSE)

Arguments

starts

A numeric vector of starting values, in 'r' parameterization of the scale.fact

nLogLik.pen

A function computing negative penalized log likelihod

optim.method

One of BFGS, CG, L-BFGS-B, Nelder-Mead, SANN, nlminb, NR, the method used for optimization.

H

Design matrix

tstat

A numeric vector of t-statistics

df

A numeric scalar or vector of degrees of freedom

dt0

A numeric vector of the central t-density evaluated at the t-statistics

spar.Pen.mat

smoothing parameter times the penalty matrix

em.iter.max

Maximum number of EM iterations

em.beta.iter.max

Maximum number of iterations in maximization step with respect to regression coefficients

scale.conv

A small numeric scalar specifying the convergence criterion for the scale parameter

lfdr.conv

A small numeric scalar specifying the convergence criterion for the local false discovery rates

NPLL.conv

A small numeric scalar specifying the convergence criterion for the negative penalized log likelihood

debugging

A logical scalar indicating whether debugging mode of the code should be run

Value

A numeric vector of updated parameter estimates. The scale factor is in the log(scale.fact-1) parameterization.

References

Long Qu, Dan Nettleton, Jack Dekkers (2012) A hierarchical semiparametric model for incorporating inter-gene relationship information for analysis of genomic data. Biometrics, 68(4):1168-1177

See Also

penLik.EMNewton, NRupdate