Learn R Programming

hmmr (version 1.0-0)

SEsamples: Bootstrap Samples for Simple 2-State Model

Description

Parametric bootstrap samples for a 2-state hidden Markov model used to compute standard errors.

Usage

data("SEsamples")

Arguments

Format

A matrix with 1000 rows for each sample, 12 columns for each parameter of the model, including the parameters that are fixed at their boundary values.

Details

The bootstrap sample was generated by the following code:

require(depmixS4)
library(hmmr)
data(simplehmm)

# define the model set.seed(214) mod1 <- depmix(obs~1,data=simplehmm,nstates=2, family=multinomial("identity"), respst=c(.6,0,.4,0,.2,.8), trst=runif(4), inst=c(1,0))

# fit the model fm1 <- fit(mod1,emcontrol=em.control(random.start=FALSE))

# compute bootstrap samples nsamples <- 1000 SEsamples <- matrix(0,ncol=npar(fm1),nrow=nsamples)

for(i in 1:nsamples) { sample <- simulate(fm1) fmsam <- fit(sample,emcontrol=em.control(random.start=FALSE)) SEsamples[i,] <- getpars(fmsam) }

Examples

Run this code
# NOT RUN {
data(SEsamples)
# standard errors
bootses <- apply(SEsamples,2,sd)
bootses[which(bootses==0)] <- NA
bootses
# compare with standard errors from finite differences
library(hmmr)
data(simplehmm)
# define the model
set.seed(214)
mod1 <- depmix(obs~1,data=simplehmm,nstates=2,
	family=multinomial("identity"), respst=c(.6,0,.4,0,.2,.8), trst=runif(4), inst=c(1,0))
# fit the model
fm1 <- fit(mod1,emcontrol=em.control(random.start=FALSE))
ses <- cbind(standardError(fm1),bootses)
ses
# }

Run the code above in your browser using DataLab