# NOT RUN {
data(WPT)
# set up predictors for the different strategies
WPT$sngl <- 0 # singleton strategy
WPT$sngl[WPT$c1 == 1 & rowSums(WPT[,c("c1","c2","c3","c4")]) == 1] <- -1
WPT$sngl[WPT$c2 == 1 & rowSums(WPT[,c("c1","c2","c3","c4")]) == 1] <- -1
WPT$sngl[WPT$c3 == 1 & rowSums(WPT[,c("c1","c2","c3","c4")]) == 1] <- 1
WPT$sngl[WPT$c4 == 1 & rowSums(WPT[,c("c1","c2","c3","c4")]) == 1] <- 1
WPT$sc1 <- 1 - 2*WPT$c1
WPT$sc2 <- 1 - 2*WPT$c2
WPT$sc3 <- -1 + 2*WPT$c3
WPT$sc4 <- -1 + 2*WPT$c4
WPT$mc <- sign(-WPT$c1 - WPT$c2 + WPT$c3 + WPT$c4)
rModels <- list(
list(GLMresponse(formula=r~-1,data=WPT,family=binomial())),
list(GLMresponse(formula=r~sngl-1,data=WPT,family=binomial())),
list(GLMresponse(formula=r~sc1-1,data=WPT,family=binomial())),
list(GLMresponse(formula=r~sc2-1,data=WPT,family=binomial())),
list(GLMresponse(formula=r~sc3-1,data=WPT,family=binomial())),
list(GLMresponse(formula=r~sc4-1,data=WPT,family=binomial())),
list(GLMresponse(formula=r~mc-1,data=WPT,family=binomial()))
)
transition <- list()
for(i in 1:7) {
transition[[i]] <- transInit(~1,nstates=7,family=multinomial(link="identity"))
}
inMod <- transInit(~1,ns=7,data=data.frame(rep(1,48)),family=multinomial("identity"))
mod <- makeDepmix(response=rModels,transition=transition,
prior=inMod,ntimes=rep(200,48),stationary=TRUE)
# }
# NOT RUN {
fmod <- fit(mod)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab