Learn R Programming

homtest (version 1.0-5)

GEV: Three parameter generalized extreme value distribution and L-moments

Description

GEV provides the link between L-moments of a sample and the three parameter generalized extreme value distribution.

Usage

f.GEV (x, xi, alfa, k)
F.GEV (x, xi, alfa, k)
invF.GEV (F, xi, alfa, k)
Lmom.GEV (xi, alfa, k)
par.GEV (lambda1, lambda2, tau3)
rand.GEV (numerosita, xi, alfa, k)

Arguments

x
vector of quantiles
xi
vector of GEV location parameters
alfa
vector of GEV scale parameters
k
vector of GEV shape parameters
F
vector of probabilities
lambda1
vector of sample means
lambda2
vector of L-variances
tau3
vector of L-CA (or L-skewness)
numerosita
numeric value indicating the length of the vector to be generated

Value

  • f.GEV gives the density $f$, F.GEV gives the distribution function $F$, invF.GEV gives the quantile function $x$, Lmom.GEV gives the L-moments ($\lambda_1$, $\lambda_2$, $\tau_3$, $\tau_4$), par.GEV gives the parameters (xi, alfa, k), and rand.GEV generates random deviates.

Details

See http://en.wikipedia.org/wiki/Generalized_extreme_value_distribution for an introduction to the GEV distribution.

Definition

Parameters (3): $\xi$ (location), $\alpha$ (scale), $k$ (shape).

Range of $x$: $-\infty < x \le \xi + \alpha / k$ if $k>0$; $-\infty < x < \infty$ if $k=0$; $\xi + \alpha / k \le x < \infty$ if $k<0$.< p="">

Probability density function: $$f(x) = \alpha^{-1} e^{-(1-k)y - e^{-y}}$$ where $y = -k^{-1}\log{1 - k(x - \xi)/\alpha}$ if $k \ne 0$, $y = (x-\xi)/\alpha$ if $k=0$.

Cumulative distribution function: $$F(x) = e^{-e^{-y}}$$

Quantile function: $x(F) = \xi + \alpha[1-(-\log F)^k]/k$ if $k \ne 0$, $x(F) = \xi - \alpha \log(-\log F)$ if $k=0$.

$k=0$ is the Gumbel distribution; $k=1$ is the reverse exponential distribution.

L-moments

L-moments are defined for $k>-1$.

$$\lambda_1 = \xi + \alpha[1 - \Gamma (1+k)]/k$$ $$\lambda_2 = \alpha (1-2^{-k}) \Gamma (1+k)]/k$$ $$\tau_3 = 2(1-3^{-k})/(1-2^{-k})-3$$ $$\tau_4 = [5(1-4^{-k})-10(1-3^{-k})+6(1-2^{-k})]/(1-2^{-k})$$

Here $\Gamma$ denote the gamma function $$\Gamma (x) = \int_0^{\infty} t^{x-1} e^{-t} dt$$

Parameters

To estimate $k$, no explicit solution is possible, but the following approximation has accurancy better than $9 \times 10^{-4}$ for $-0.5 \le \tau_3 \le 0.5$: $$k \approx 7.8590 c + 2.9554 c^2$$ where $$c = \frac{2}{3+\tau_3} - \frac{\log 2}{\log 3}$$ The other parameters are then given by $$\alpha = \frac{\lambda_2 k}{(1-2^{-k})\Gamma(1+k)}$$ $$\xi = \lambda_1 - \alpha[1 - \Gamma(1+k)]/k$$

References

Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-moments, Cambridge University Press, Cambridge, UK.

See Also

rnorm, runif, KAPPA, Lmoments.