Learn R Programming

hts

hts is retired, with minimum maintenance to keep it on CRAN. We recommend using the fable package instead.

The R package hts presents functions to create, plot and forecast hierarchical and grouped time series.

Installation

You can install the stable version on R CRAN.

install.packages('hts', dependencies = TRUE)

You can also install the development version from Github

# install.packages("devtools")
devtools::install_github("earowang/hts")

Usage

Example 1: hierarchical time series

library(hts)
#> Loading required package: forecast
#> Registered S3 method overwritten by 'quantmod':
#>   method            from
#>   as.zoo.data.frame zoo

# hts example 1
print(htseg1)
#> Hierarchical Time Series 
#> 3 Levels 
#> Number of nodes at each level: 1 2 5 
#> Total number of series: 8 
#> Number of observations per series: 10 
#> Top level series: 
#> Time Series:
#> Start = 1992 
#> End = 2001 
#> Frequency = 1 
#>  [1] 48.74808 49.48047 49.93238 50.24070 50.60846 50.84851 51.70922 51.94330
#>  [9] 52.57796 53.21496
summary(htseg1)
#> Hierarchical Time Series 
#> 3 Levels 
#> Number of nodes at each level: 1 2 5 
#> Total number of series: 8 
#> Number of observations per series: 10 
#> Top level series: 
#> Time Series:
#> Start = 1992 
#> End = 2001 
#> Frequency = 1 
#>  [1] 48.74808 49.48047 49.93238 50.24070 50.60846 50.84851 51.70922 51.94330
#>  [9] 52.57796 53.21496
#> 
#> Labels: 
#> [1] "Level 0" "Level 1" "Level 2"
aggts1 <- aggts(htseg1)
aggts2 <- aggts(htseg1, levels = 1)
aggts3 <- aggts(htseg1, levels = c(0, 2))
plot(htseg1, levels = 1)

smatrix(htseg1)  # Return the dense mode
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,]    1    1    1    1    1
#> [2,]    1    1    1    0    0
#> [3,]    0    0    0    1    1
#> [4,]    1    0    0    0    0
#> [5,]    0    1    0    0    0
#> [6,]    0    0    1    0    0
#> [7,]    0    0    0    1    0
#> [8,]    0    0    0    0    1

# Forecasts
fcasts1.bu <- forecast(
  htseg1, h = 4, method = "bu", fmethod = "ets", parallel = TRUE
)
aggts4 <- aggts(fcasts1.bu)
summary(fcasts1.bu)
#> Hierarchical Time Series 
#> 3 Levels 
#> Number of nodes at each level: 1 2 5 
#> Total number of series: 8 
#> Number of observations in each historical series: 10 
#> Number of forecasts per series: 4 
#> Top level series of forecasts: 
#> Time Series:
#> Start = 2002 
#> End = 2005 
#> Frequency = 1 
#> [1] 53.2149 53.2149 53.2149 53.2149
#> 
#> Method: Bottom-up forecasts 
#> Forecast method: ETS
fcasts1.td <- forecast(
  htseg1, h = 4, method = "tdfp", fmethod = "arima", keep.fitted = TRUE
)
summary(fcasts1.td)  # When keep.fitted = TRUE, return in-sample accuracy
#> Hierarchical Time Series 
#> 3 Levels 
#> Number of nodes at each level: 1 2 5 
#> Total number of series: 8 
#> Number of observations in each historical series: 10 
#> Number of forecasts per series: 4 
#> Top level series of forecasts: 
#> Time Series:
#> Start = 2002 
#> End = 2005 
#> Frequency = 1 
#> [1] 53.71128 54.20760 54.70392 55.20024
#> 
#> Method: Top-down forecasts using forecasts proportions 
#> Forecast method: Arima 
#> In-sample error measures at the bottom level: 
#>                AA           AB          AC          BA           BB
#> ME   0.0007719336 0.0009183738 0.001003812 0.001043247  0.001087807
#> RMSE 0.1298400018 0.0515879830 0.040306867 0.037462277  0.105015065
#> MAE  0.0978321731 0.0436089571 0.033210387 0.027003846  0.081906948
#> MAPE 1.1275970221 0.4534439625 0.323535559 0.251066115  0.691364891
#> MPE  0.0367879336 0.0069220593 0.006785872 0.007787895 -0.011087494
#> MASE 0.6825678136 0.5197483057 0.774250880 0.447950006  0.493684443
fcasts1.comb <- forecast(
  htseg1, h = 4, method = "comb", fmethod = "ets", keep.fitted = TRUE
)
aggts4 <- aggts(fcasts1.comb)
plot(fcasts1.comb, levels = 2)

plot(fcasts1.comb, include = 5, levels = c(1, 2))

Example 2: hierarchical time series

# hts example 2
data <- window(htseg2, start = 1992, end = 2002)
test <- window(htseg2, start = 2003)
fcasts2.mo <- forecast(
  data, h = 5, method = "mo", fmethod = "ets", level = 1,
  keep.fitted = TRUE, keep.resid = TRUE
)
accuracy.gts(fcasts2.mo, test)
#>           Total          A          B        A10          A20         B30
#> ME   -0.1463168 -0.2229191 0.07660233 -0.2283919  0.005472780 -0.01989880
#> RMSE  0.1500119  0.2452066 0.14257606  0.2523329  0.009805797  0.02928379
#> MAE   0.1463168  0.2229191 0.11693106  0.2283919  0.009268225  0.02409282
#> MAPE  9.3179712  7.5314777 2.36244104  8.7993966  2.460560011  1.71428541
#> MPE  -9.3179712  7.5314777 1.45433283  8.7993966 -1.631079601 -1.39920296
#> MASE  0.4617075  1.2506962 0.84324674  1.5148807  0.337389275  0.52860991
#>             B40        A10A       A10B          A10C         A20A         A20B
#> ME   0.09650113 -0.05448806 -0.1733829 -0.0005209908  0.007965591 -0.002492811
#> RMSE 0.17060895  0.06809235  0.1867174  0.0100661166  0.012682474  0.008654148
#> MAE  0.14102388  0.05448806  0.1733829  0.0088897199  0.010413971  0.007052515
#> MAPE 3.98260313  4.37476593 21.6158413  1.5612291069  3.334410408 13.402921842
#> MPE  2.54768302  4.37476593 21.6158413  0.0605205225 -2.607467068 -2.981389244
#> MASE 1.51492018  0.51577051  5.3650162  0.6942763126  0.820393749  0.477277465
#>            B30A        B30B        B30C        B40A      B40B
#> ME   0.01212900 -0.01099794 -0.02102986 -0.04273559 0.1392367
#> RMSE 0.01311771  0.01422607  0.02442915  0.06656885 0.2344656
#> MAE  0.01212900  0.01099794  0.02102986  0.04273559 0.1811449
#> MAPE 4.13200908  2.39939647  3.26532975  3.09570196 8.2253477
#> MPE  4.13200908 -2.39939647 -3.26532975 -3.09570196 5.9207223
#> MASE 0.49670326  1.22312029  1.72843722  0.82335272 4.3982548
accuracy.gts(fcasts2.mo, test, levels = 1)
#>               A          B
#> ME   -0.2229191 0.07660233
#> RMSE  0.2452066 0.14257606
#> MAE   0.2229191 0.11693106
#> MAPE  7.5314777 2.36244104
#> MPE   7.5314777 1.45433283
#> MASE  1.2506962 0.84324674
fcasts2.td <- forecast(
  data, h = 5, method = "tdgsa", fmethod = "ets", 
  keep.fitted = TRUE, keep.resid = TRUE
)
plot(fcasts2.td, include = 5)

plot(fcasts2.td, include = 5, levels = c(0, 2))

Example 3: grouped time series

# gts example
plot(infantgts, levels = 1)

fcasts3.comb <- forecast(infantgts, h = 4, method = "comb", fmethod = "ets")
agg_gts1 <- aggts(fcasts3.comb, levels = 1)
agg_gts2 <- aggts(fcasts3.comb, levels = 1, forecasts = FALSE)
plot(fcasts3.comb)

plot(fcasts3.comb, include = 5, levels = c(1, 2))

fcasts3.combsd <- forecast(
  infantgts, h = 4, method = "comb", fmethod = "ets",
  weights = "sd", keep.fitted = TRUE
)

fcasts3.combn <- forecast(
  infantgts, h = 4, method = "comb", fmethod = "ets",
  weights = "nseries", keep.resid = TRUE
)

License

This package is free and open source software, licensed under GPL (>= 2).

Copy Link

Version

Install

install.packages('hts')

Monthly Downloads

4,448

Version

6.0.3

License

GPL (>= 2)

Maintainer

Last Published

July 30th, 2024

Functions in hts (6.0.3)

get_groups

Get nodes/groups from an hts/gts object
infantgts

Regional infant mortality counts across Australia from 1933 to 2003.
MinT

Trace minimization for hierarchical or grouped time series
smatrix

Summing matrix for hierarchical or grouped time series
htseg1

Simple examples of hierarchical time series.
aggts

Extract selected time series from a gts object
window.gts

Time window of a gts object
accuracy.gts

In-sample or out-of-sample accuracy measures for forecast grouped and hierarchical model
forecast.gts

Forecast a hierarchical or grouped time series
combinef

Optimally combine forecasts from a hierarchical or grouped time series
plot.gts

Plot grouped or hierarchical time series
allts

Extract all time series from a gts object
gts

Create a grouped time series
hts-package

Hierarchical and grouped time series
hts

Create a hierarchical time series