# NOT RUN {
#Example from httk jss paper:
# }
# NOT RUN {
library(ggplot2)
library(scales)
vary.params <- NULL
params <- parameterize_pbtk(chem.name = "Zoxamide")
for(this.param in names(subset(params,
names(params) != "Funbound.plasma"))) vary.params[this.param] <- .2
censored.params <- list(Funbound.plasma = list(cv = 0.2, lod = 0.01))
set.seed(1)
out <- monte_carlo(params, cv.params = vary.params,
censored.params = censored.params, return.samples = T,
model = "pbtk", suppress.messages = T)
zoxamide <- ggplot(as.data.frame(out), aes(out)) +
geom_histogram(fill="blue", binwidth=1/6) + scale_x_log10() +
ylab("Number of Samples") + xlab("Steady State Concentration (uM)") +
theme(axis.text = element_text(size = 16),
axis.title = element_text(size = 16))
print(zoxamide)
# Fig 1 in Wambaugh et al. (2015) SimCYP vs. our predictions:
vary.params <- list(BW=0.3)
vary.params[["Vliverc"]]<-0.3
vary.params[["Qgfrc"]]<-0.3
vary.params[["Qtotal.liverc"]]<-0.3
vary.params[["million.cells.per.gliver"]]<-0.3
vary.params[["Clint"]]<-0.3
censored.params<-list(Funbound.plasma=list(cv=0.3,lod=0.01))
pValues <- get_cheminfo(c("Compound","CAS","Clint.pValue"))
pValues.rat <- get_cheminfo(c("Compound","CAS","Clint.pValue"),species="Rat")
Wetmore.table <- NULL
for (this.CAS in get_cheminfo(model="3compartmentss")){
if (this.CAS %in% get_wetmore_cheminfo()){
print(this.CAS)
these.params <- parameterize_steadystate(chem.cas=this.CAS)
if (these.params[["Funbound.plasma"]] == 0.0)
{
these.params[["Funbound.plasma"]] <- 0.005
}
these.params[["Fhep.assay.correction"]] <- 1
vLiver.human.values <- monte_carlo(these.params,
cv.params=vary.params,
censored.params=censored.params,
which.quantile=c(0.05,0.5,0.95),
output.units="mg/L",
model='3compartmentss',
suppress.messages=T,
well.stirred.correction=F,
Funbound.plasma.correction=F)
percentiles <- c("5","50","95")
for (this.index in 1:3)
{
this.row <- as.data.frame(get_wetmore_css(chem.cas=this.CAS,
which.quantile=as.numeric(percentiles[this.index])/100))
this.row <- cbind(this.row, as.data.frame(vLiver.human.values[this.index]))
this.row <- cbind(this.row, as.data.frame(percentiles[this.index]))
this.row <- cbind(this.row, as.data.frame("Human"))
this.row <- cbind(this.row, as.data.frame(this.CAS))
this.row <- cbind(this.row, as.data.frame(pValues[pValues$CAS==this.CAS,
"Human.Clint.pValue"]<0.05))
colnames(this.row) <- c("Wetmore", "Predicted", "Percentile", "Species",
"CAS", "Systematic")
if (is.na(this.row["Systematic"])) this.row["Systematic"] <- F
Wetmore.table <- Wetmore.table <- rbind(Wetmore.table,this.row)
}
}
}
scientific_10 <- function(x) {
out <- gsub("1e", "10^", scientific_format()(x))
out <- gsub("\+","",out)
out <- gsub("10\^01","10",out)
out <- parse(text=gsub("10\^00","1",out))
}
Fig1 <- ggplot(Wetmore.table, aes(Predicted,Wetmore,group = CAS)) +
geom_line() +
geom_point(aes(colour=factor(Percentile),shape=factor(Percentile))) +
scale_colour_discrete(name="Percentile") +
scale_shape_manual(name="Percentile", values=c("5"=21, "50"=22,"95"=24)) +
scale_x_log10(expression(paste(C[ss]," Predicted (mg/L) with Refined Assumptions")),
label=scientific_10) +
scale_y_log10(expression(paste(C[ss]," Wetmore ",italic("et al.")," (2012) (mg/L)")),
label=scientific_10) +
geom_abline(intercept = 0, slope = 1,linetype="dashed")+
theme_bw()+
theme(legend.position="bottom", text = element_text(size=18))
print(Fig1)
Fig1a.fit <- lm(log(Wetmore) ~ log(Predicted)*Percentile, Wetmore.table)
## End(**Not run**)
# }
Run the code above in your browser using DataLab