# \donttest{
set.seed(1234)
calc_mc_css(chem.name='Bisphenol A',output.units='uM',
samples=100,return.samples=TRUE)
set.seed(1234)
calc_mc_css(chem.name='Bisphenol A',output.units='uM',httkpop.generate.arg.list=list(method='vi'))
set.seed(1234)
calc_mc_css(chem.name='2,4-d',which.quantile=.9,httkpop=FALSE,tissue='heart')
set.seed(1234)
calc_mc_css(chem.cas = "80-05-7", which.quantile = 0.5,
output.units = "uM", samples = 2000,
httkpop.generate.arg.list=list(method='vi', gendernum=NULL,
agelim_years=NULL, agelim_months=NULL, weight_category =
c("Underweight", "Normal", "Overweight", "Obese")))
params <- parameterize_pbtk(chem.cas="80-05-7")
set.seed(1234)
calc_mc_css(parameters=params,model="pbtk")
# }
# \donttest{
set.seed(1234)
# Standard HTTK Monte Carlo:
NSAMP = 500
calc_mc_css(chem.cas="90-43-7",model="pbtk",samples=NSAMP)
set.seed(1234)
calc_mc_css(chem.cas="90-43-7",
model="pbtk",
samples=NSAMP,
invitro.mc.arg.list = list(
adjusted.Funbound.plasma = TRUE,
poormetab = TRUE,
fup.censored.dist = FALSE,
fup.lod = 0.01,
fup.meas.cv = 0.0,
clint.meas.cv = 0.0,
fup.pop.cv = 0.3,
clint.pop.cv = 0.3))
set.seed(1234)
# HTTK Monte Carlo with no HTTK-Pop physiological variability):
calc_mc_css(chem.cas="90-43-7",model="pbtk",samples=NSAMP,httkpop=FALSE)
set.seed(1234)
# HTTK Monte Carlo with no in vitro uncertainty and variability):
calc_mc_css(chem.cas="90-43-7",model="pbtk",samples=NSAMP,invitrouv=FALSE)
set.seed(1234)
# HTTK Monte Carlo with no HTTK-Pop and no in vitro uncertainty and variability):
calc_mc_css(chem.cas="90-43-7",model="pbtk",samples=NSAMP,httkpop=FALSE,invitrouv=FALSE)
# Should be the same as the mean result:
calc_analytic_css(chem.cas="90-43-7",model="pbtk",output.units="mg/L")
set.seed(1234)
# HTTK Monte Carlo using basic Monte Carlo sampler:
calc_mc_css(chem.cas="90-43-7",
model="pbtk",
samples=NSAMP,
httkpop=FALSE,
invitrouv=FALSE,
vary.params=list(Pow=0.3))
# }
Run the code above in your browser using DataLab