Learn R Programming

hydroGOF (version 0.6-0)

hydroGOF-package: Goodness-of-fit (GoF) functions for numerical and graphical comparison of simulated and observed time series, mainly focused on hydrological modelling.

Description

S3 functions implementing both statistical and graphical goodness-of-fit measures between observed and simulated values, to be used during the calibration, validation, and application of hydrological models.

Missing values in observed and/or simulated values can be removed before computations.

Arguments

Author

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

Maintainer: Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

Details

Package:hydroGOF
Type:Package
Version:0.6-0
Date:2024-05-08
License:GPL >= 2
LazyLoad:yes
Packaged:Wed 08 May 2024 05:13:53 PM -04 ; MZB
BuiltUnder:R version 4.4.0 (2024-04-24) -- "Puppy Cup" ;x86_64-pc-linux-gnu (64-bit)

Quantitative statistics included in this package are:

me Mean Errormae Mean Absolute Error
mse Mean Squared Errorrmse Root Mean Square Error
ubRMSE Unbiased Root Mean Square Errornrmse Normalized Root Mean Square Error
pbias Percent Biasrsr Ratio of RMSE to the Standard Deviation of the Observations
rSD Ratio of Standard DeviationsNSE Nash-Sutcliffe Efficiency
mNSE Modified Nash-Sutcliffe EfficiencyrNSE Relative Nash-Sutcliffe Efficiency
wNSE Weighted Nash-Sutcliffe EfficiencywsNSE Weighted Seasonal Nash-Sutcliffe Efficiency
d Index of Agreementdr Refined Index of Agreement
md Modified Index of Agreementrd Relative Index of Agreement
cp Persistence IndexrPearson Pearson correlation coefficient
R2 Coefficient of determinationbr2 R2 multiplied by the coefficient of the regression line between sim and obs
VE Volumetric efficiencyKGE Kling-Gupta efficiency
KGElf Kling-Gupta Efficiency for low valuesKGEnp Non-parametric version of the Kling-Gupta Efficiency
KGEkm Knowable Moments Kling-Gupta EfficiencysKGE Split Kling-Gupta Efficiency
APFB Annual Peak Flow BiasHFB High Flow Bias
rSpearman Spearman's rank correlation coefficientssq Sum of the Squared Residuals
pbiasfdc PBIAS in the slope of the midsegment of the flow duration curvepfactor P-factor
rfactor R-factor----------------------------------------------------------------------------------------------------------

References

Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. (2009), Assessing the impact of climate change on water resources in Iran, Water Resources Research, 45(10), W10,434, doi:10.1029/2008WR007615.

Abbaspour, K.C., Yang, J. ; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J. ; Zobrist, J.; Srinivasan, R. (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014.

Box, G.E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407.

Barrett, J.P. (1974). The coefficient of determination-some limitations. The American Statistician, 28(1), 19-20. doi:10.1080/00031305.1974.10479056.

Chai, T.; Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature, Geoscientific Model Development, 7, 1247-1250. doi:10.5194/gmd-7-1247-2014.

Cinkus, G.; Mazzilli, N.; Jourde, H.; Wunsch, A.; Liesch, T.; Ravbar, N.; Chen, Z.; and Goldscheider, N. (2023). When best is the enemy of good - critical evaluation of performance criteria in hydrological models. Hydrology and Earth System Sciences 27, 2397-2411, doi:10.5194/hess-27-2397-2023.

Criss, R. E.; Winston, W. E. (2008), Do Nash values have value? Discussion and alternate proposals. Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072.

Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. (2010). Performance metrics for soil moisture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840. doi: 10.1175/2010JHM1223.1.

Fowler, K.; Coxon, G.; Freer, J.; Peel, M.; Wagener, T.; Western, A.; Woods, R.; Zhang, L. (2018). Simulating runoff under changing climatic conditions: A framework for model improvement. Water Resources Research, 54(12), 812-9832. doi:10.1029/2018WR023989.

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff models for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511.

Garrick, M.; Cunnane, C.; Nash, J.E. (1978). A criterion of efficiency for rainfall-runoff models. Journal of Hydrology 36, 375-381. doi:10.1016/0022-1694(78)90155-5.

Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.

Gupta, H.V.; Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011WR010962.

Hahn, G.J. (1973). The coefficient of determination exposed. Chemtech, 3(10), 609-612. Aailable online at: https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf.

Hodson, T.O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not, Geoscientific Model Development, 15, 5481-5487, doi:10.5194/gmd-15-5481-2022.

Hundecha, Y., Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of hydrology, 292(1-4), 281-295. doi:10.1016/j.jhydrol.2004.01.002.

Kitanidis, P.K.; Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model. 2. Applications and results. Water Resources Research, Vol. 16, No. 6, pp. 1034:1044. doi:10.1029/WR016i006p01034.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331. doi:10.5194/hess-23-4323-2019.

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

Krstic, G.; Krstic, N.S.; Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods, 15(2), 42. doi:10.22237/jmasm/1478004000

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

Ling, X.; Huang, Y.; Guo, W.; Wang, Y.; Chen, C.; Qiu, B.; Ge, J.; Qin, K.; Xue, Y.; Peng, J. (2021). Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China. Hydrology and Earth System Sciences, 25(7), 4209-4229. doi:10.5194/hess-25-4209-2021.

Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R.: (2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models, Hydrology Earth System Sciences 23, 2601-2614, doi:10.5194/hess-23-2601-2019.

Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3):885-900

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part 1: a discussion of principles, Journal of Hydrology 10, pp. 282-290. doi:10.1016/0022-1694(70)90255-6.

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044.

Pizarro, A.; Jorquera, J. (2024). Advancing objective functions in hydrological modelling: Integrating knowable moments for improved simulation accuracy. Journal of Hydrology, 634, 131071. doi:10.1016/j.jhydrol.2024.131071.

Pool, S.; Vis, M.; Seibert, J. (2018). Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953. doi:/10.1080/02626667.2018.1552002.

Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andreassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE criterion. doi:10.5194/hess-22-4583-2018.

Schaefli, B., Gupta, H. (2007). Do Nash values have value?. Hydrological Processes 21, 2075-2080. doi:10.1002/hyp.6825.

Schober, P.; Boer, C.; Schwarte, L.A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763-1768. doi:10.1213/ANE.0000000000002864.

Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. (2008b), Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-2), 30, doi:10.1016/j.jhydrol.2007.12.025

Sorooshian, S., Q. Duan, and V. K. Gupta. (1993). Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model, Water Resources Research, 29 (4), 1185-1194, doi:10.1029/92WR02617.

Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J. Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp. 45-58). Appleton-Century-Crofts. doi:10.1037/11491-005

Tang, G.; Clark, M.P.; Papalexiou, S.M. (2021). SC-earth: a station-based serially complete earth dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511. doi:10.1175/JCLI-D-21-0067.1.

Yapo P.O.; Gupta H.V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-1694(95)02918-4

Yilmaz, K.K., Gupta, H.V. ; Wagener, T. (2008), A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44, W09417, doi:10.1029/2007WR006716.

Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184--194. doi:10.1080/02723646.1981.10642213.

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-3048-8_23.

Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O'Donnell, J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res., 90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.

Willmott, C.J.; Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79-82, doi:10.3354/cr030079.

Willmott, C.J.; Matsuura, K.; Robeson, S.M. (2009). Ambiguities inherent in sums-of-squares-based error statistics, Atmospheric Environment, 43, 749-752, doi:10.1016/j.atmosenv.2008.10.005.

Willmott, C.J.; Robeson, S.M.; Matsuura, K. (2012). A refined index of model performance. International Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419.

Willmott, C.J.; Robeson, S.M.; Matsuura, K.; Ficklin, D.L. (2015). Assessment of three dimensionless measures of model performance. Environmental Modelling & Software, 73, pp.167-174. doi:10.1016/j.envsoft.2015.08.012

Zambrano-Bigiarini, M.; Bellin, A. (2012). Comparing goodness-of-fit measures for calibration of models focused on extreme events. EGU General Assembly 2012, Vienna, Austria, 22-27 Apr 2012, EGU2012-11549-1.

See Also

Examples

Run this code
obs <- 1:100
sim <- obs

# Numerical goodness of fit
gof(sim,obs)

# Reverting the order of simulated values
sim <- 100:1
gof(sim,obs)

if (FALSE) {
ggof(sim, obs)
}

##################
# Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
require(zoo)
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

# Generating a simulated daily time series, initially equal to observations
sim <- obs 

# Getting the numeric goodness-of-fit measures for the "best" (unattainable) case
gof(sim=sim, obs=obs)

# Randomly changing the first 2000 elements of 'sim', by using a normal 
# distribution  with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

# Getting the new numeric goodness of fit
gof(sim=sim, obs=obs)

# Graphical representation of 'obs' vs 'sim', along with the numeric 
# goodness-of-fit measures
if (FALSE) {
ggof(sim=sim, obs=obs)
}

Run the code above in your browser using DataLab