######################
## Ex1: Computation of monthly values, removing any missing value in 'x'
# Loading the DAILY precipitation data at SanMartino
data(SanMartinoPPts)
x <- SanMartinoPPts
# Subsetting 'x' to its first three months (Jan/1921 - Mar/1921)
x <- window(x, end="1921-03-31")
## Transforming into NA the 10% of values in 'x'
set.seed(10) # for reproducible results
n <- length(x)
n.nas <- round(0.1*n, 0)
na.index <- sample(1:n, n.nas)
x[na.index] <- NA
## Agreggating from Daily to Monthly, removing any missing value in 'x'
m <- daily2monthly(x, FUN=sum, na.rm=TRUE)
######################
## Ex2: Computation of monthly values only when the percentage of NAs in each
# month is lower than a user-defined percentage (10% in this example).
# Loading the DAILY precipitation data at SanMartino
data(SanMartinoPPts)
x <- SanMartinoPPts
# Subsetting 'x' to its first three months (Jan/1921 - Mar/1921)
x <- window(x, end="1921-03-31")
## Transforming into NA the 10% of values in 'x'
set.seed(10) # for reproducible results
n <- length(x)
n.nas <- round(0.1*n, 0)
na.index <- sample(1:n, n.nas)
x[na.index] <- NA
## Daily to monthly, only for months with less than 10% of missing values
m2 <- daily2monthly(x, FUN=sum, na.rm=TRUE, na.rm.max=0.1)
# Verifying that the second and third month of 'x' had 10% or more of missing values
cmv(x, tscale="month")
######################
## Ex3: Loading the HOURLY streamflows for the station Karamea at Gorge
data(KarameaAtGorgeQts)
x <- KarameaAtGorgeQts
# Sub-daily to monthly ts
subdaily2monthly(x, FUN=mean, na.rm=TRUE)
Run the code above in your browser using DataLab