## Ex1: Computation of daily values, removing any missing value in 'x'
## Loading the time series of hourly streamflows for the station Karamea at Gorge
data(KarameaAtGorgeQts)
x <- KarameaAtGorgeQts
# Plotting the hourly streamflow values
plot(x)
# Subsetting 'x' to its first three days (01/Jan/1980 - 03/Jan/1980)
x <- window(x, end="1980-01-03 23:59:00")
## Transforming into NA the 10% of values in 'x'
set.seed(10) # for reproducible results
n <- length(x)
n.nas <- round(0.1*n, 0)
na.index <- sample(1:n, n.nas)
x[na.index] <- NA
## Agreggating from Sub-Daily to Daily, removing any missing value in 'x'
( d1 <- subdaily2daily(x, FUN=mean, na.rm=TRUE) )
## Ex2: Computation of daily values, removing any missing value in 'x' and
## considering that the new day starts at 08:00:00 local time
( d2 <- subdaily2daily(x, FUN=mean, na.rm=TRUE, start="08:00:00") )
## Ex3: Computation of daily values, removing any missing value in 'x' and
## considering that the new day starts at 08:00:00, and forcing
# UTC both for 'x' and 'start'
( d3 <- subdaily2daily(x, FUN=mean, na.rm=TRUE, start="08:00:00", tz="UTC") )
######################
## Ex4: Compuation of daily values only when the percentage of NAs in each
# day is lower than a user-defined percentage (10% in this example).
( d4 <- subdaily2daily(x, FUN=mean, na.rm=TRUE, na.rm.max=0.1) )
Run the code above in your browser using DataLab