Learn R Programming

hyper.fit (version 1.1.1)

hyper.data: Data included in hyper.fit package

Description

hogg: Toy ASCII table taken from Hogg 2010. Contains x/y/sx/sy/corxy columns. Provided by David Hogg.

intrin: Toy ASCII table that has intrinsic scatter. Contains x/y/sx/sy/corxy columns. Provided by Michelle Cluver.

trumpet: Toy ASCII table that has trumpet-like covariance errors and no intrinsic scatter. Contains x/y/sx/sy/corxy columns. Provided by Johannes Buchner.

FP6dFGS: 6dFGS fundamental plane data taken from table 8 of Campbell et al 2014. We use columns 6/7, 12/13, 18/19 for the FP parameters and their errors, and column 26 = 111111 to create a clean selection. Provided By Christina Magoulas.

GAMAsmVsize: Galaxy mass vs size data taken from Lange et al 2014. Bottom-right panel of Figure 3 (i.e. r-band elliptical relation data). Provided by Rebecca Lange.

TFR: Tully-Fisher Relation data taken from Obreschkow and Meyer 2013. Provided by Danail Obreschkow.

MJB: Mase-Angular Momentum-Bulge/Total data taken from Obreschkow & Glazebrook 2014. Provided by Danail Obreschkow.

convtest2dOpt: Intrinsic scatter convergence test data for 2 DoF and optim fitted simulations, shown as an example in hyper.sigcor.

convtest2dLD: Intrinsic scatter convergence test data for 2 DoF and LaplacesDemon fitted simulations, shown as an example in hyper.sigcor.

convtest1dNorm: Intrinsic scatter convergence test data for 1 DoF and direct sample SD estimation, shown as an example in hyper.sigcor.

Usage

data(hogg)
data(intrin)
data(trumpet)
data(FP6dFGS)
data(GAMAsmVsize)
data(TFR)
data(MJB)
data(convtest2dOpt)
data(convtest2dLD)
data(convtest1dNorm)

Arguments

References

Robotham, A.S.G., & Obreschkow, D., PASA, in press

Campbell, L., et al., 2014, MNRAS, 443, 1231 (http://mnras.oxfordjournals.org/content/443/2/1231)

Cluver, M., et al., 2014, ApJ, 782, 90 (http://arxiv.org/pdf/1401.0837v1.pdf)

Hogg, D., Bovy, J., Lang, D., 2010 (http://arxiv.org/pdf/1008.4686v1.pdf)

Lange, R., et al., MNRAS, accepted

Obreschkow & Meyer, 2013, ApJ, 777, 140

Obreschkow & Glazebrook, 2014, ApJ, 784, 26

See Also

hyper.basic, hyper.convert, hyper.data, hyper.fit, hyper.plot, hyper.sigcor, hyper.summary

Examples

Run this code
# NOT RUN {
hogg=read.table(system.file('data/hogg.tab', package='hyper.fit'),header=TRUE)
#or
data(hogg)
print(hogg[1:10,])

intrin=read.table(system.file('data/intrin.tab', package='hyper.fit'), header=TRUE)
#or
data(intrin)
print(intrin[1:10,])

trumpet=read.table(system.file('data/trumpet.tab', package='hyper.fit'), header=TRUE)
#or
data(trumpet)
print(trumpet[1:10,])

FP6dFGS=read.table(system.file('data/FP6dFGS.tab', package='hyper.fit'), header=TRUE)
#or
data(FP6dFGS)
print(FP6dFGS[1:10,])

GAMAsmVsize=read.table(system.file('data/GAMAsmVsize.tab', package='hyper.fit'), header=TRUE)
#or
data(GAMAsmVsize)
print(GAMAsmVsize[1:10,])

TFR=read.table(system.file('data/TFR.tab', package='hyper.fit'), header=TRUE)
#or
data(TFR)
print(TFR[1:10,])

MBJ=read.table(system.file('data/MJB.tab', package='hyper.fit'), header=TRUE)
#or
data(MJB)
print(MJB[1:10,])

# }

Run the code above in your browser using DataLab