if (FALSE) {
##### single occupancy object #####
data(penguins,package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
# split the dataset on species and sex
penguins_no_na_split = split(penguins_no_na,
paste(penguins_no_na$species, penguins_no_na$sex, sep = "_"))
# calculate the hypervolume for each element of the splitted dataset
hv_list = mapply(function(x, y)
hypervolume_gaussian(x[, c("bill_length_mm","bill_depth_mm","flipper_length_mm")],
samples.per.point=100, name = y),
x = penguins_no_na_split,
y = names(penguins_no_na_split))
# transform the list into an HypervolumeList
hv_list = hypervolume_join(hv_list)
# calculate occupancy based on sex
hv_occupancy_list_sex = hypervolume_n_occupancy(hv_list,
classification = rep(c("female", "male"), 3))
# calculate the mean occupancy value
get_occupancy_stats(hv_occupancy_list_sex, mean)
##### bootstrapped occupancy objects #####
# bootstrap input hypervolumes
hv_boot = hypervolume_n_resample(name = "example", hv_list = hv_list, n = 9)
# calculate occupancy on bootstrapped hypervolumes
hv_boot_occ = hypervolume_n_occupancy_bootstrap(hv_boot, name = "example_occ",
classification = rep(c("female", "male"), 3))
# calculate summary statistics for pairwise comparisons
get_occupancy_stats_bootstrap(hv_boot_occ, FUN = mean)
}
Run the code above in your browser using DataLab