library("DALEX")
library("iBreakDown")
set.seed(1313)
model_titanic_glm <- glm(survived ~ gender + age + fare,
data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,
data = titanic_imputed,
y = titanic_imputed$survived,
label = "glm")
# there is no explanation level uncertanity linked with additive models
bd_glm <- break_down_uncertainty(explain_titanic_glm, titanic_imputed[1, ])
bd_glm
plot(bd_glm)
if (FALSE) {
## Not run:
library("randomForest")
set.seed(1313)
model <- randomForest(status ~ . , data = HR)
new_observation <- HR_test[1,]
explainer_rf <- explain(model,
data = HR[1:1000, 1:5])
bd_rf <- break_down_uncertainty(explainer_rf,
new_observation)
bd_rf
plot(bd_rf)
# example for regression - apartment prices
# here we do not have intreactions
model <- randomForest(m2.price ~ . , data = apartments)
explainer_rf <- explain(model,
data = apartments_test[1:1000, 2:6],
y = apartments_test$m2.price[1:1000])
bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,])
bd_rf
plot(bd_rf)
bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,], path = 1:5)
plot(bd_rf)
bd_rf <- break_down_uncertainty(explainer_rf,
apartments_test[1,],
path = c("floor", "no.rooms", "district",
"construction.year", "surface"))
plot(bd_rf)
bd <- break_down(explainer_rf,
apartments_test[1,])
plot(bd)
s <- shap(explainer_rf,
apartments_test[1,])
plot(s)
}
Run the code above in your browser using DataLab