This function takes an object of class iCellR and finds optimal number of clusters and clusters the data.
run.clustering(
x = NULL,
clust.method = "kmeans",
dist.method = "euclidean",
index.method = "silhouette",
max.clust = 25,
min.clust = 2,
dims = 1:10
)
An object of class iCellR.
An object of class iCellR.
the cluster analysis method to be used. This should be one of: "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid", "kmeans".
the distance measure to be used to compute the dissimilarity matrix. This must be one of: "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski" or "NULL". By default, distance="euclidean". If the distance is "NULL", the dissimilarity matrix (diss) should be given by the user. If distance is not "NULL", the dissimilarity matrix should be "NULL".
the index to be calculated. This should be one of : "kl", "ch", "hartigan", "ccc", "scott", "marriot", "trcovw", "tracew", "friedman", "rubin", "cindex", "db", "silhouette", "duda", "pseudot2", "beale", "ratkowsky", "ball", "ptbiserial", "gap", "frey", "mcclain", "gamma", "gplus", "tau", "dunn", "hubert", "sdindex", "dindex", "sdbw", "all" (all indices except GAP, Gamma, Gplus and Tau), "alllong" (all indices with Gap, Gamma, Gplus and Tau included).
maximal number of clusters, between 2 and (number of objects - 1), greater or equal to min.nc.
minimum number of clusters, default = 2.
PCA dimentions to be use for clustering, default = 1:10.