Learn R Programming

iDOS (version 1.0.0)

estimate.expression.cna.correlation: estimate.expression.cna.correlation

Description

Estimate subtype specific correlation between mRNA and CNA profiles

Usage

estimate.expression.cna.correlation( exp.data = NULL, cna.data.log2 = NULL, corr.threshold = 0.3, corr.direction = "two.sided", subtypes.metadata = NULL, feature.ids = NULL, cancer.type = NULL, data.dir = NULL, graphs.dir = NULL )

Arguments

exp.data
Feature by sample mRNA abundance matrix
cna.data.log2
Feature by sample CNA log ratio matrix
corr.threshold
Threshold for Spearman's Rho to consider a feature as candidate driver
corr.direction
Whether to include positively (greater), negatively (less) or both (two.sided) correlated features. Defaults to two.sided
subtypes.metadata
Subtypes metadata list of lists. Must contain at least one subtype specific samples using list subtype.samples.list. If no subtypes are present, specify list element "All" with all samples
feature.ids
Vector of features to be used to estimate correlation
cancer.type
Name of the cancer type or dataset
data.dir
Path to output directory where mRNA and CNA correlation statistics will be stored
graphs.dir
Path to graphs directory

Value

A list of lists containing correlated features per cancer subtype

Examples

Run this code

# load test data
x <- get.test.data(data.types = c("mRNA.T", "CNA"));

# temporary output directory
tmp.output.dir <- tempdir();

# estimate mRNA and CNA correlation
correlated.features <- estimate.expression.cna.correlation(
  exp.data = x$mRNA.T$BLCA, 
  cna.data.log2 = x$CNA.log2$BLCA, 
  corr.threshold = 0.3, 
  corr.direction = "two.sided", 
  subtypes.metadata = list(
    "subtype.samples.list" = list("All" = colnames(x$mRNA.T$BLCA))
    ), 
  feature.ids = rownames(x$mRNA.T$BLCA), 
  cancer.type = "BLCA", 
  data.dir = paste(tmp.output.dir, "/data/BLCA/", sep = ""),
  graphs.dir = paste(tmp.output.dir, "/graphs/BLCA/", sep = "")
  );

Run the code above in your browser using DataLab