# load test data
x <- get.test.data(data.types = c("mRNA.T", "CNA"));
# temporary output directory
tmp.output.dir <- tempdir();
# estimate mRNA and CNA correlation for each cancer/disease type
correlated.features <- estimate.expression.cna.correlation(
exp.data = x$mRNA.T$BLCA,
cna.data.log2 = x$CNA.log2$BLCA,
corr.threshold = 0.3,
corr.direction = "two.sided",
subtypes.metadata = list(
"subtype.samples.list" = list("All" = colnames(x$mRNA.T$BLCA))
),
feature.ids = rownames(x$mRNA.T$BLCA),
cancer.type = "BLCA",
data.dir = paste(tmp.output.dir, "/data/BLCA/", sep = ""),
graphs.dir = paste(tmp.output.dir, "/graphs/BLCA/", sep = "")
);
# estimate NULL distribution
estimate.null.distribution.correlation(
exp.data = x$mRNA.T$BLCA,
cna.data.log2 = x$CNA.log2$BLCA,
corr.threshold = 0.3,
corr.direction = "two.sided",
subtypes.metadata = list(
"subtype.samples.list" = list("All" = colnames(x$mRNA.T$BLCA))
),
feature.ids = rownames(x$mRNA.T$BLCA),
observed.correlated.features = correlated.features$correlated.genes.subtypes,
iterations = 50,
cancer.type = "BLCA",
data.dir = paste(tmp.output.dir, "/data/BLCA/", sep = "")
);
Run the code above in your browser using DataLab