Learn R Programming

igraph (version 1.2.11)

layout_as_bipartite: Simple two-row layout for bipartite graphs

Description

Minimize edge-crossings in a simple two-row (or column) layout for bipartite graphs.

Usage

layout_as_bipartite(graph, types = NULL, hgap = 1, vgap = 1, maxiter = 100)

as_bipartite(...)

Arguments

graph

The bipartite input graph. It should have a logical ‘type’ vertex attribute, or the types argument must be given.

types

A logical vector, the vertex types. If this argument is NULL (the default), then the ‘type’ vertex attribute is used.

hgap

Real scalar, the minimum horizontal gap between vertices in the same layer.

vgap

Real scalar, the distance between the two layers.

maxiter

Integer scalar, the maximum number of iterations in the crossing minimization stage. 100 is a reasonable default; if you feel that you have too many edge crossings, increase this.

...

Arguments to pass to layout_as_bipartite.

Value

A matrix with two columns and as many rows as the number of vertices in the input graph.

Details

The layout is created by first placing the vertices in two rows, according to their types. Then the positions within the rows are optimized to minimize edge crossings, using the Sugiyama algorithm (see layout_with_sugiyama).

See Also

layout_with_sugiyama

Other graph layouts: add_layout_(), component_wise(), layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(), layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(), layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), layout_(), merge_coords(), norm_coords(), normalize()

Examples

Run this code
# NOT RUN {
# Random bipartite graph
inc <- matrix(sample(0:1, 50, replace = TRUE, prob=c(2,1)), 10, 5)
g <- graph_from_incidence_matrix(inc)
plot(g, layout = layout_as_bipartite,
     vertex.color=c("green","cyan")[V(g)$type+1])

# Two columns
g %>%
  add_layout_(as_bipartite()) %>%
  plot()
# }

Run the code above in your browser using DataLab