Given a graph, constraint
calculates Burt's constraint for each
vertex.
constraint(graph, nodes = V(graph), weights = NULL)
A numeric vector of constraint scores
A graph object, the input graph.
The vertices for which the constraint will be calculated. Defaults to all vertices.
The weights of the edges. If this is NULL
and there is
a weight
edge attribute this is used. If there is no such edge
attribute all edges will have the same weight.
Jeroen Bruggeman (https://sites.google.com/site/jebrug/jeroen-bruggeman-social-science) and Gabor Csardi csardi.gabor@gmail.com
Burt's constraint is higher if ego has less, or mutually stronger related (i.e. more redundant) contacts. Burt's measure of constraint, \(C_i\), of vertex \(i\)'s ego network \(V_i\), is defined for directed and valued graphs, $$C_i=\sum_{j \in V_i \setminus \{i\}} (p_{ij}+\sum_{q \in V_i \setminus \{i,j\}} p_{iq} p_{qj})^2$$ for a graph of order (ie. number of vertices) \(N\), where proportional tie strengths are defined as $$p_{ij} = \frac{a_{ij}+a_{ji}}{\sum_{k \in V_i \setminus \{i\}}(a_{ik}+a_{ki})},$$ \(a_{ij}\) are elements of \(A\) and the latter being the graph adjacency matrix. For isolated vertices, constraint is undefined.
Burt, R.S. (2004). Structural holes and good ideas. American Journal of Sociology 110, 349-399.
g <- sample_gnp(20, 5/20)
constraint(g)
Run the code above in your browser using DataLab