Learn R Programming

igraph (version 1.3.5)

sample_correlated_gnp: Generate a new random graph from a given graph by randomly adding/removing edges

Description

Sample a new graph by perturbing the adjacency matrix of a given graph and shuffling its vertices.

Usage

sample_correlated_gnp(
  old.graph,
  corr,
  p = edge_density(old.graph),
  permutation = NULL
)

Value

An unweighted graph of the same size as old.graph such that the correlation coefficient between the entries of the two adjacency matrices is corr. Note each pair of corresponding matrix entries is a pair of correlated Bernoulli random variables.

Arguments

old.graph

The original graph.

corr

A scalar in the unit interval, the target Pearson correlation between the adjacency matrices of the original and the generated graph (the adjacency matrix being used as a vector).

p

A numeric scalar, the probability of an edge between two vertices, it must in the open (0,1) interval. The default is the empirical edge density of the graph. If you are resampling an Erdos-Renyi graph and you know the original edge probability of the Erdos-Renyi model, you should supply that explicitly.

permutation

A numeric vector, a permutation vector that is applied on the vertices of the first graph, to get the second graph. If NULL, the vertices are not permuted.

Details

Please see the reference given below.

References

Lyzinski, V., Fishkind, D. E., Priebe, C. E. (2013). Seeded graph matching for correlated Erdos-Renyi graphs. https://arxiv.org/abs/1304.7844

See Also

sample_correlated_gnp_pair, sample_gnp

Examples

Run this code
g <- sample_gnp(1000, .1)
g2 <- sample_correlated_gnp(g, corr = 0.5)
cor(as.vector(g[]), as.vector(g2[]))
g
g2

Run the code above in your browser using DataLab