Learn R Programming

imputeLCMD (version 2.0)

impute.ZERO: Imputation of missing entries by 0.

Description

This function performs the trivial imputation of missing values by 0. Is is only used for comparison purposes.

Usage

impute.ZERO(dataSet.mvs)

Arguments

dataSet.mvs

A data matrix containing left-censored missing data.

Value

A complete expression data matrix with missing values imputed.

See Also

impute.QRILC, impute.MinDet, impute.MinProb

Examples

Run this code
# NOT RUN {
# generate expression data matrix
exprsDataObj = generate.ExpressionData(nSamples1 = 6, nSamples2 = 6,
                          meanSamples = 0, sdSamples = 0.2,
                          nFeatures = 1000, nFeaturesUp = 50, nFeaturesDown = 50,
                          meanDynRange = 20, sdDynRange = 1,
                          meanDiffAbund = 1, sdDiffAbund = 0.2)
exprsData = exprsDataObj[[1]]
  
# insert 15% missing data with 100% missing not at random
m.THR = quantile(exprsData, probs = 0.15)
sd.THR = 0.1
MNAR.rate = 100
exprsData.MD.obj = insertMVs(exprsData,m.THR,sd.THR,MNAR.rate)
exprsData.MD = exprsData.MD.obj[[2]]

# perform missing data imputation  
exprsData.imputed = impute.ZERO(exprsData.MD)

# }
# NOT RUN {
hist(exprsData[,1])
hist(exprsData.MD[,1])
hist(exprsData.imputed[,1])
# }
# NOT RUN {
## The function is currently defined as
function (dataSet.mvs) 
{
    dataSet.imputed = dataSet.mvs
    dataSet.imputed[which(is.na(dataSet.mvs))] = 0
    return(dataSet.imputed)
  }
# }

Run the code above in your browser using DataLab