# find the point estimate---mean number of hours worked per week
point_estimate <- gss %>%
specify(response = hours) %>%
calculate(stat = "mean")
# ...and a bootstrap distribution
boot_dist <- gss %>%
# ...we're interested in the number of hours worked per week
specify(response = hours) %>%
# generating data points
generate(reps = 1000, type = "bootstrap") %>%
# finding the distribution from the generated data
calculate(stat = "mean")
# find a confidence interval around the point estimate
ci <- boot_dist %>%
get_confidence_interval(point_estimate = point_estimate,
# at the 95% confidence level
level = .95,
# using the standard error method
type = "se")
# and plot it!
boot_dist %>%
visualize() +
shade_confidence_interval(ci)
# or just plot the bounds
boot_dist %>%
visualize() +
shade_confidence_interval(ci, fill = NULL)
# you can shade confidence intervals on top of
# theoretical distributions, too---the theoretical
# distribution will be recentered and rescaled to
# align with the confidence interval
sampling_dist <- gss %>%
specify(response = hours) %>%
assume(distribution = "t")
visualize(sampling_dist) +
shade_confidence_interval(ci)
# \donttest{
# to visualize distributions of coefficients for multiple
# explanatory variables, use a `fit()`-based workflow
# fit 1000 linear models with the `hours` variable permuted
null_fits <- gss %>%
specify(hours ~ age + college) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
fit()
null_fits
# fit a linear model to the observed data
obs_fit <- gss %>%
specify(hours ~ age + college) %>%
fit()
obs_fit
# get confidence intervals for each term
conf_ints <-
get_confidence_interval(
null_fits,
point_estimate = obs_fit,
level = .95
)
# visualize distributions of coefficients
# generated under the null
visualize(null_fits)
# add a confidence interval shading layer to juxtapose
# the null fits with the observed fit for each term
visualize(null_fits) +
shade_confidence_interval(conf_ints)
# }
# more in-depth explanation of how to use the infer package
if (FALSE) {
vignette("infer")
}
Run the code above in your browser using DataLab