Learn R Programming

influenceAUC (version 0.1.2)

Identify Influential Observations in Binary Classification

Description

Ke, B. S., Chiang, A. J., & Chang, Y. C. I. (2018) provide two theoretical methods (influence function and local influence) based on the area under the receiver operating characteristic curve (AUC) to quantify the numerical impact of each observation to the overall AUC. Alternative graphical tools, cumulative lift charts, are proposed to reveal the existences and approximate locations of those influential observations through data visualization.

Copy Link

Version

Install

install.packages('influenceAUC')

Monthly Downloads

181

Version

0.1.2

License

GPL-3

Maintainer

Bo-Shiang Ke

Last Published

May 30th, 2020

Functions in influenceAUC (0.1.2)

build_AUC_plot

Internal function: Build an AUC ggplot2 object
print.LAUC

Show LAUC results
print_output

Internal function: Print output
print.IAUC

Show IAUC results
plot_sequentially

Internal function: Plot sequentially
plot.ICLC

Visualize ICLC results
pinpoint

Determine Identified Influential Cases
plot.IAUC

Visualize IAUC result
plot.LAUC

Visualize LAUC results
create_lift_chart

Internal function: Create lift-chart ggplot2 object
LAUC

Local Influence Approaches On AUC
ICLC

Cumulative Lift Charts
IAUC

Influence Functions On AUC
fetch_output_indeces

Internal function: Fetch indeces in an output object