Learn R Programming

ingredients (version 2.3.0)

accumulated_dependence: Accumulated Local Effects Profiles aka ALEPlots

Description

Accumulated Local Effects Profiles accumulate local changes in Ceteris Paribus Profiles. Function accumulated_dependence calls ceteris_paribus and then aggregate_profiles.

Usage

accumulated_dependence(x, ...)

# S3 method for explainer accumulated_dependence( x, variables = NULL, N = 500, variable_splits = NULL, grid_points = 101, ..., variable_type = "numerical" )

# S3 method for default accumulated_dependence( x, data, predict_function = predict, label = class(x)[1], variables = NULL, N = 500, variable_splits = NULL, grid_points = 101, ..., variable_type = "numerical" )

# S3 method for ceteris_paribus_explainer accumulated_dependence(x, ..., variables = NULL)

accumulated_dependency(x, ...)

Value

an object of the class aggregated_profiles_explainer

Arguments

x

an explainer created with function DALEX::explain(), an object of the class ceteris_paribus_explainer or a model to be explained.

...

other parameters

variables

names of variables for which profiles shall be calculated. Will be passed to calculate_variable_split. If NULL then all variables from the validation data will be used.

N

number of observations used for calculation of partial dependence profiles. By default, 500 observations will be chosen randomly.

variable_splits

named list of splits for variables, in most cases created with calculate_variable_split. If NULL then it will be calculated based on validation data avaliable in the explainer.

grid_points

number of points for profile. Will be passed tocalculate_variable_split.

variable_type

a character. If "numerical" then only numerical variables will be calculated. If "categorical" then only categorical variables will be calculated.

data

validation dataset Will be extracted from x if it's an explainer NOTE: It is best when target variable is not present in the data

predict_function

predict function Will be extracted from x if it's an explainer

label

name of the model. By default it's extracted from the class attribute of the model

Details

Find more detailes in the Accumulated Local Dependence Chapter.

References

ALEPlot: Accumulated Local Effects (ALE) Plots and Partial Dependence (PD) Plots https://cran.r-project.org/package=ALEPlot, Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

Examples

Run this code
library("DALEX")
library("ingredients")

model_titanic_glm <- glm(survived ~ gender + age + fare,
                         data = titanic_imputed, family = "binomial")

explain_titanic_glm <- explain(model_titanic_glm,
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               verbose = FALSE)

adp_glm <- accumulated_dependence(explain_titanic_glm,
                                  N = 25, variables = c("age", "fare"))
head(adp_glm)
plot(adp_glm)

# \donttest{
library("ranger")

model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)

explain_titanic_rf <- explain(model_titanic_rf,
                              data = titanic_imputed[,-8],
                              y = titanic_imputed[,8],
                              label = "ranger forest",
                              verbose = FALSE)

adp_rf <- accumulated_dependence(explain_titanic_rf, N = 200, variable_type = "numerical")
plot(adp_rf)

adp_rf <- accumulated_dependence(explain_titanic_rf, N = 200, variable_type = "categorical")
plotD3(adp_rf, label_margin = 80, scale_plot = TRUE)
# }

Run the code above in your browser using DataLab