Learn R Programming

ingredients (version 2.3.0)

show_aggregated_profiles: Adds a Layer with Aggregated Profiles

Description

Function show_aggregated_profiles adds a layer to a plot created with plot.ceteris_paribus_explainer.

Usage

show_aggregated_profiles(
  x,
  ...,
  size = 0.5,
  alpha = 1,
  color = "#371ea3",
  variables = NULL
)

Value

a ggplot2 layer

Arguments

x

a ceteris paribus explainer produced with function ceteris_paribus()

...

other explainers that shall be plotted together

size

a numeric. Size of lines to be plotted

alpha

a numeric between 0 and 1. Opacity of lines

color

a character. Either name of a color or name of a variable that should be used for coloring

variables

if not NULL then only variables will be presented

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

Examples

Run this code
library("DALEX")
library("ingredients")

selected_passangers <- select_sample(titanic_imputed, n = 100)

model_titanic_glm <- glm(survived ~ gender + age + fare,
                         data = titanic_imputed, family = "binomial")

explain_titanic_glm <- explain(model_titanic_glm,
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8])

cp_rf <- ceteris_paribus(explain_titanic_glm, selected_passangers)

pdp_rf <- aggregate_profiles(cp_rf, type = "partial", variables = "age")

plot(cp_rf, variables = "age") +
  show_observations(cp_rf, variables = "age") +
  show_aggregated_profiles(pdp_rf, size = 3)

# \donttest{
library("ranger")

model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)

explain_titanic_rf <- explain(model_titanic_rf,
                              data = titanic_imputed[,-8],
                              y = titanic_imputed[,8],
                              label = "ranger forest",
                              verbose = FALSE)

cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)
cp_rf

pdp_rf <- aggregate_profiles(cp_rf, type = "partial", variables = "age")
head(pdp_rf)

plot(cp_rf, variables = "age") +
  show_observations(cp_rf, variables = "age") +
  show_rugs(cp_rf, variables = "age", color = "red") +
  show_aggregated_profiles(pdp_rf, size = 3)
# }

Run the code above in your browser using DataLab