Learn R Programming

ingredients (version 2.3.0)

show_observations: Adds a Layer with Observations to a Profile Plot

Description

Function show_observations adds a layer to a plot created with plot.ceteris_paribus_explainer for selected observations. Various parameters help to decide what should be plotted, profiles, aggregated profiles, points or rugs.

Usage

show_observations(
  x,
  ...,
  size = 2,
  alpha = 1,
  color = "#371ea3",
  variable_type = "numerical",
  variables = NULL
)

Value

a ggplot2 layer

Arguments

x

a ceteris paribus explainer produced with function ceteris_paribus()

...

other explainers that shall be plotted together

size

a numeric. Size of lines to be plotted

alpha

a numeric between 0 and 1. Opacity of lines

color

a character. Either name of a color or name of a variable that should be used for coloring

variable_type

a character. If numerical then only numerical variables will be plotted. If categorical then only categorical variables will be plotted.

variables

if not NULL then only variables will be presented

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

Examples

Run this code
library("DALEX")
library("ingredients")
# \donttest{
library("ranger")

rf_model <- ranger(survived ~., data = titanic_imputed, probability = TRUE)

explainer_rf <- explain(rf_model,
                        data = titanic_imputed[,-8],
                        y = titanic_imputed[,8],
                        label = "ranger forest",
                        verbose = FALSE)

selected_passangers <- select_sample(titanic_imputed, n = 100)
cp_rf <- ceteris_paribus(explainer_rf, selected_passangers)
cp_rf

plot(cp_rf, variables = "age", color = "grey") +
show_observations(cp_rf, variables = "age", color = "black") +
  show_rugs(cp_rf, variables = "age", color = "red")
# }

Run the code above in your browser using DataLab