Learn R Programming

inlabru (version 2.3.1)

Poisson2_1D: 1-Dimensional NonHomogeneous Poisson example.

Description

Point data and count data, together with intensity function and expected counts for a unimodal nonhomogeneous 1-dimensional Poisson process example.

Usage

data(Poisson2_1D)

Arguments

Format

The data contain the following R objects:

lambda2_1D:

A function defining the intensity function of a nonhomogeneous Poisson process. Note that this function is only defined on the interval (0,55).

cov2_1D:

A function that gives what we will call a 'habitat suitability' covariate in 1D space.

E_nc2

The expected counts of the gridded data.

pts2

The locations of the observed points (a data frame with one column, named x).

countdata2

A data frame with three columns, containing the count data:

x
The grid cell midpoint.
count
The number of detections in the cell.
exposure
The width of the cell.

Examples

Run this code
# NOT RUN {
library(ggplot2)
data(Poisson2_1D)
p1 <- ggplot(countdata2) +
  geom_point(data = countdata2, aes(x = x, y = count), col = "blue") +
  ylim(0, max(countdata2$count, E_nc2)) +
  geom_point(
    data = countdata2, aes(x = x), y = 0, shape = "+",
    col = "blue", cex = 4
  ) +
  geom_point(
    data = data.frame(x = countdata2$x, y = E_nc2), aes(x = x),
    y = E_nc2, shape = "_", cex = 5
  ) +
  xlab(expression(bold(s))) +
  ylab("count")
ss <- seq(0, 55, length = 200)
lambda <- lambda2_1D(ss)
p2 <- ggplot() +
  geom_line(
    data = data.frame(x = ss, y = lambda),
    aes(x = x, y = y), col = "blue"
  ) +
  ylim(0, max(lambda)) +
  geom_point(data = pts2, aes(x = x), y = 0.2, shape = "|", cex = 4) +
  xlab(expression(bold(s))) +
  ylab(expression(lambda(bold(s))))
multiplot(p1, p2, cols = 1)
# }

Run the code above in your browser using DataLab