# Confidence Intervals for Model Predictions
# ------------------------------------------
data(mtcars)
# Linear model
# ------------
x <- lm(mpg ~ cyl + hp, data = mtcars)
predictions <- predict(x)
ci_vals <- get_predicted_ci(x, predictions, ci_type = "prediction")
head(ci_vals)
ci_vals <- get_predicted_ci(x, predictions, ci_type = "confidence")
head(ci_vals)
ci_vals <- get_predicted_ci(x, predictions, ci = c(0.8, 0.9, 0.95))
head(ci_vals)
# Bootstrapped
# ------------
if (require("boot")) {
predictions <- get_predicted(x, iterations = 500)
get_predicted_ci(x, predictions)
}
if (require("datawizard") && require("bayestestR")) {
ci_vals <- get_predicted_ci(x, predictions, ci = c(0.80, 0.95))
head(ci_vals)
datawizard::reshape_ci(ci_vals)
ci_vals <- get_predicted_ci(x,
predictions,
dispersion_method = "MAD",
ci_method = "HDI"
)
head(ci_vals)
}
# Logistic model
# --------------
x <- glm(vs ~ wt, data = mtcars, family = "binomial")
predictions <- predict(x, type = "link")
ci_vals <- get_predicted_ci(x, predictions, ci_type = "prediction")
head(ci_vals)
ci_vals <- get_predicted_ci(x, predictions, ci_type = "confidence")
head(ci_vals)
Run the code above in your browser using DataLab