Returns the number of parameters (coefficients) of a model.
n_parameters(x, ...)# S3 method for default
n_parameters(x, remove_nonestimable = FALSE, ...)
# S3 method for merMod
n_parameters(
x,
effects = c("fixed", "random"),
remove_nonestimable = FALSE,
...
)
# S3 method for glmmTMB
n_parameters(
x,
effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated"),
remove_nonestimable = FALSE,
...
)
# S3 method for zeroinfl
n_parameters(
x,
component = c("all", "conditional", "zi", "zero_inflated"),
remove_nonestimable = FALSE,
...
)
# S3 method for gam
n_parameters(
x,
component = c("all", "conditional", "smooth_terms"),
remove_nonestimable = FALSE,
...
)
# S3 method for brmsfit
n_parameters(x, effects = "all", component = "all", ...)
The number of parameters in the model.
A statistical model.
Arguments passed to or from other methods.
Logical, if TRUE
, removes (i.e. does not
count) non-estimable parameters (which may occur for models with
rank-deficient model matrix).
Should number of parameters for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.
Should total number of parameters, number parameters for the conditional model, the zero-inflated part of the model, the dispersion term or the instrumental variables be returned? Applies to models with zero-inflated and/or dispersion formula, or to models with instrumental variable (so called fixed-effects regressions). May be abbreviated.
data(iris)
model <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris)
n_parameters(model)
Run the code above in your browser using DataLab