Returns the coefficients from a model.
# S3 method for betareg
get_parameters(
x,
component = c("all", "conditional", "precision", "location", "distributional",
"auxiliary"),
...
)# S3 method for glmgee
get_parameters(x, component = c("all", "conditional", "dispersion"), ...)
# S3 method for DirichletRegModel
get_parameters(
x,
component = c("all", "conditional", "precision", "location", "distributional",
"auxiliary"),
...
)
# S3 method for averaging
get_parameters(x, component = c("conditional", "full"), ...)
# S3 method for glmx
get_parameters(
x,
component = c("all", "conditional", "extra", "location", "distributional", "auxiliary"),
...
)
# S3 method for clm2
get_parameters(x, component = c("all", "conditional", "scale"), ...)
# S3 method for mvord
get_parameters(
x,
component = c("all", "conditional", "thresholds", "correlation"),
...
)
# S3 method for mjoint
get_parameters(x, component = c("all", "conditional", "survival"), ...)
A data frame with three columns: the parameter names, the related point estimates and the component.
A fitted model.
Should all predictor variables, predictor variables for the conditional model, the zero-inflated part of the model, the dispersion term or the instrumental variables be returned? Applies to models with zero-inflated and/or dispersion formula, or to models with instrumental variable (so called fixed-effects regressions). May be abbreviated. Note that the conditional component is also called count or mean component, depending on the model.
Currently not used.
data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)
Run the code above in your browser using DataLab