Returns the names of model parameters, like they typically
appear in the summary()
output. For Bayesian models, the parameter
names equal the column names of the posterior samples after coercion
from as.data.frame()
.
# S3 method for BGGM
find_parameters(
x,
component = c("correlation", "conditional", "intercept", "all"),
flatten = FALSE,
...
)# S3 method for BFBayesFactor
find_parameters(
x,
effects = c("all", "fixed", "random"),
component = c("all", "extra"),
flatten = FALSE,
...
)
# S3 method for MCMCglmm
find_parameters(x, effects = c("all", "fixed", "random"), flatten = FALSE, ...)
# S3 method for bamlss
find_parameters(
x,
flatten = FALSE,
component = c("all", "conditional", "location", "distributional", "auxiliary"),
parameters = NULL,
...
)
# S3 method for brmsfit
find_parameters(
x,
effects = "all",
component = "all",
flatten = FALSE,
parameters = NULL,
...
)
# S3 method for bayesx
find_parameters(
x,
component = c("all", "conditional", "smooth_terms"),
flatten = FALSE,
parameters = NULL,
...
)
# S3 method for stanreg
find_parameters(
x,
effects = c("all", "fixed", "random"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),
flatten = FALSE,
parameters = NULL,
...
)
# S3 method for stanmvreg
find_parameters(
x,
effects = c("all", "fixed", "random"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),
flatten = FALSE,
parameters = NULL,
...
)
# S3 method for sim.merMod
find_parameters(
x,
effects = c("all", "fixed", "random"),
flatten = FALSE,
parameters = NULL,
...
)
A list of parameter names. For simple models, only one list-element,
conditional
, is returned. For more complex models, the returned list may
have following elements:
conditional
, the "fixed effects" part from the model
random
, the "random effects" part from the model
zero_inflated
, the "fixed effects" part from the zero-inflation component
of the model
zero_inflated_random
, the "random effects" part from the zero-inflation
component of the model
smooth_terms
, the smooth parameters
Furthermore, some models, especially from brms, can also return auxiliary parameters. These may be one of the following:
sigma
, the residual standard deviation (auxiliary parameter)
dispersion
, the dispersion parameters (auxiliary parameter)
beta
, the beta parameter (auxiliary parameter)
simplex
, simplex parameters of monotonic effects (brms only)
mix
, mixture parameters (brms only)
shiftprop
, shifted proportion parameters (brms only)
A fitted model.
Should all predictor variables, predictor variables for the conditional model, the zero-inflated part of the model, the dispersion term or the instrumental variables be returned? Applies to models with zero-inflated and/or dispersion formula, or to models with instrumental variable (so called fixed-effects regressions). May be abbreviated. Note that the conditional component is also called count or mean component, depending on the model.
Logical, if TRUE
, the values are returned
as character vector, not as list. Duplicated values are removed.
Currently not used.
Should parameters for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.
Regular expression pattern that describes the parameters that should be returned.
data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)
Run the code above in your browser using DataLab