Returns the coefficients (or posterior samples for Bayesian models) from a model.
get_parameters(x, ...)# S3 method for BBmm
get_parameters(x, effects = c("fixed", "random"), ...)
# S3 method for glimML
get_parameters(x, effects = c("fixed", "random", "all"),
...)
# S3 method for gam
get_parameters(x, component = c("all", "conditional",
"smooth_terms"), ...)
# S3 method for vgam
get_parameters(x, component = c("all", "conditional",
"smooth_terms"), ...)
# S3 method for rqss
get_parameters(x, component = c("all", "conditional",
"smooth_terms"), ...)
# S3 method for Gam
get_parameters(x, component = c("all", "conditional",
"smooth_terms"), ...)
# S3 method for zeroinfl
get_parameters(x, component = c("all", "conditional",
"zi", "zero_inflated"), ...)
# S3 method for gamm
get_parameters(x, component = c("all", "conditional",
"smooth_terms"), ...)
# S3 method for aovlist
get_parameters(x, effects = c("fixed", "random",
"all"), ...)
# S3 method for hurdle
get_parameters(x, component = c("all", "conditional",
"zi", "zero_inflated"), ...)
# S3 method for MCMCglmm
get_parameters(x, effects = c("fixed", "random",
"all"), ...)
# S3 method for coxme
get_parameters(x, effects = c("fixed", "random"), ...)
# S3 method for merMod
get_parameters(x, effects = c("fixed", "random"), ...)
# S3 method for rlmerMod
get_parameters(x, effects = c("fixed", "random"), ...)
# S3 method for mixed
get_parameters(x, effects = c("fixed", "random"), ...)
# S3 method for lme
get_parameters(x, effects = c("fixed", "random"), ...)
# S3 method for MixMod
get_parameters(x, effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated",
"dispersion"), ...)
# S3 method for glmmTMB
get_parameters(x, effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated",
"dispersion"), ...)
# S3 method for brmsfit
get_parameters(x, effects = c("fixed", "random",
"all"), component = c("all", "conditional", "zi", "zero_inflated",
"dispersion", "simplex", "sigma", "smooth_terms"), parameters = NULL,
...)
# S3 method for stanreg
get_parameters(x, effects = c("fixed", "random",
"all"), parameters = NULL, ...)
# S3 method for sim.merMod
get_parameters(x, effects = c("fixed", "random",
"all"), parameters = NULL, ...)
# S3 method for BFBayesFactor
get_parameters(x, iterations = 4000,
progress = FALSE, ...)
# S3 method for stanmvreg
get_parameters(x, effects = c("fixed", "random",
"all"), parameters = NULL, ...)
A fitted model.
Currently not used.
Should parameters for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.
Should all parameters, parameters for the conditional model, the zero-inflated part of the model, the dispersion term or the instrumental variables be returned? Applies to models with zero-inflated and/or dispersion formula, or to models with instrumental variable (so called fixed-effects regressions). May be abbreviated.
Regular expression pattern that describes the parameters that should be returned.
Number of posterior draws.
Display progress.
for non-Bayesian models and if effects = "fixed"
, a data frame with two columns: the parameter names and the related point estimates
if effects = "random"
, a list of data frames with the random effects (as returned by ranef()
), unless the random effects have the same simplified structure as fixed effects (e.g. for models from MCMCglmm)
for Bayesian models, the posterior samples from the requested parameters as data frame
for Anova (aov()
) with error term, a list of parameters for the conditional and the random effects parameters
for models with smooth terms or zero-inflation component, a data frame with three columns: the parameter names, the related point estimates and the component
In most cases when models either return different "effects" (fixed,
random) or "components" (conditional, zero-inflated, ...), the arguments
effects
and component
can be used.
get_parameters()
is comparable to coef()
, however, the coefficients
are returned as data frame (with columns for names and point estimates of
coefficients). For Bayesian models, the posterior samples of parameters are
returned.
# NOT RUN {
data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)
# }
Run the code above in your browser using DataLab