Learn R Programming

insight (version 1.0.0)

find_algorithm: Find sampling algorithm and optimizers

Description

Returns information on the sampling or estimation algorithm as well as optimization functions, or for Bayesian model information on chains, iterations and warmup-samples.

Usage

find_algorithm(x, ...)

Value

A list with elements depending on the model.

For frequentist models:

  • algorithm, for instance "OLS" or "ML"

  • optimizer, name of optimizing function, only applies to specific models (like gam)

For frequentist mixed models:

  • algorithm, for instance "REML" or "ML"

  • optimizer, name of optimizing function

For Bayesian models:

  • algorithm, the algorithm

  • chains, number of chains

  • iterations, number of iterations per chain

  • warmup, number of warmups per chain

Arguments

x

A fitted model.

...

Currently not used.

Examples

Run this code
data(sleepstudy, package = "lme4")
m <- lme4::lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
find_algorithm(m)
if (FALSE) { # require("rstanarm") && require("lme4")
# \donttest{
data(sleepstudy, package = "lme4")
m <- suppressWarnings(rstanarm::stan_lmer(
  Reaction ~ Days + (1 | Subject),
  data = sleepstudy,
  refresh = 0
))
find_algorithm(m)
# }
}

Run the code above in your browser using DataLab