Returns the names of model parameters, like they typically
appear in the summary()
output. For Bayesian models, the parameter
names equal the column names of the posterior samples after coercion
from as.data.frame()
. See the documentation for your object's class:
Bayesian models (rstanarm, brms, MCMCglmm, ...)
Generalized additive models (mgcv, VGAM, ...)
Marginal effects models (mfx)
Estimated marginal means (emmeans)
Mixed models (lme4, glmmTMB, GLMMadaptive, ...)
Zero-inflated and hurdle models (pscl, ...)
Models with special components (betareg, MuMIn, ...)
find_parameters(x, ...)# S3 method for default
find_parameters(x, flatten = FALSE, verbose = TRUE, ...)
A list of parameter names. For simple models, only one list-element,
conditional
, is returned.
A fitted model.
Currently not used.
Logical, if TRUE
, the values are returned as character
vector, not as list. Duplicated values are removed.
Toggle messages and warnings.
Possible values for the component
argument depend on the model class.
Following are valid options:
"all"
: returns all model components, applies to all models, but will only
have an effect for models with more than just the conditional model component.
"conditional"
: only returns the conditional component, i.e. "fixed effects"
terms from the model. Will only have an effect for models with more than
just the conditional model component.
"smooth_terms"
: returns smooth terms, only applies to GAMs (or similar
models that may contain smooth terms).
"zero_inflated"
(or "zi"
): returns the zero-inflation component.
"dispersion"
: returns the dispersion model component. This is common
for models with zero-inflation or that can model the dispersion parameter.
"instruments"
: for instrumental-variable or some fixed effects regression,
returns the instruments.
"nonlinear"
: for non-linear models (like models of class nlmerMod
or
nls
), returns staring estimates for the nonlinear parameters.
"correlation"
: for models with correlation-component, like gls
, the
variables used to describe the correlation structure are returned.
"location"
: returns location parameters such as conditional
,
zero_inflated
, smooth_terms
, or instruments
(everything that are
fixed or random effects - depending on the effects
argument - but no
auxiliary parameters).
"distributional"
(or "auxiliary"
): components like sigma
, dispersion
,
beta
or precision
(and other auxiliary parameters) are returned.
Special models
Some model classes also allow rather uncommon options. These are:
mhurdle: "infrequent_purchase"
, "ip"
, and "auxiliary"
BGGM: "correlation"
and "intercept"
BFBayesFactor, glmx: "extra"
averaging:"conditional"
and "full"
mjoint: "survival"
mfx: "precision"
, "marginal"
betareg, DirichletRegModel: "precision"
mvord: "thresholds"
and "correlation"
clm2: "scale"
selection: "selection"
, "outcome"
, and "auxiliary"
For models of class brmsfit
(package brms), even more options are
possible for the component
argument, which are not all documented in detail
here.
There are four functions that return information about the variables in a
model: find_predictors()
, find_variables()
, find_terms()
and
find_parameters()
. There are some differences between those functions,
which are explained using following model. Note that some, but not all of
those functions return information about the dependent and independent
variables. In this example, we only show the differences for the independent
variables.
model <- lm(mpg ~ factor(gear), data = mtcars)
find_terms(model)
returns the model terms, i.e. how the variables were
used in the model, e.g. applying transformations like factor()
, poly()
etc. find_terms()
may return a variable name multiple times in case of
multiple transformations. The return value would be "factor(gear)"
.
find_parameters(model)
returns the names of the model parameters
(coefficients). The return value would be "(Intercept)"
, "factor(gear)4"
and "factor(gear)5"
.
find_variables()
returns the original variable names. find_variables()
returns each variable name only once. The return value would be "gear"
.
find_predictors()
is comparable to find_variables()
and also returns
the original variable names, but excluded the dependent (response)
variables. The return value would be "gear"
.
data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)
Run the code above in your browser using DataLab