Returns the number of parameters (coefficients) of a model.
n_parameters(x, ...)# S3 method for default
n_parameters(x, remove_nonestimable = FALSE, ...)
# S3 method for merMod
n_parameters(
x,
effects = c("fixed", "random"),
remove_nonestimable = FALSE,
...
)
# S3 method for glmmTMB
n_parameters(
x,
effects = c("fixed", "random"),
component = c("all", "conditional", "zi", "zero_inflated"),
remove_nonestimable = FALSE,
...
)
# S3 method for zeroinfl
n_parameters(
x,
component = c("all", "conditional", "zi", "zero_inflated"),
remove_nonestimable = FALSE,
...
)
# S3 method for gam
n_parameters(
x,
component = c("all", "conditional", "smooth_terms"),
remove_nonestimable = FALSE,
...
)
# S3 method for brmsfit
n_parameters(x, effects = "all", component = "all", ...)
The number of parameters in the model.
A statistical model.
Arguments passed to or from other methods.
Logical, if TRUE
, removes (i.e. does not
count) non-estimable parameters (which may occur for models with
rank-deficient model matrix).
Should variables for fixed effects ("fixed"
), random effects
("random"
) or both ("all"
) be returned? Only applies to mixed models. May
be abbreviated.
Should total number of parameters, number parameters for the conditional model, the zero-inflated part of the model, the dispersion term or the instrumental variables be returned? Applies to models with zero-inflated and/or dispersion formula, or to models with instrumental variable (so called fixed-effects regressions). May be abbreviated.
data(iris)
model <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris)
n_parameters(model)
Run the code above in your browser using DataLab