Learn R Programming

intsvy (version 2.9)

intsvy.reg.pv: Regression analysis with plausible values

Description

intsvy.reg.pv performs linear regression analysis (OLS) with plausible values and replicate weights.

Usage

intsvy.reg.pv(x, pvnames, by, 
data, std=FALSE, export = FALSE, name = "output", folder = getwd(), config)

Value

intsvy.reg.pv prints a data.frame with regression results (i.e., coefficients, standard errors, t-values, R-squared) and stores different regression output including residuals, replicate coefficients, variance within and between, and the regression data.frame in a list object of class "intsvy.reg".

Arguments

pvnames

The names of columns corresponding to the achievement plausible scores.

x

Data labels of independent variables.

by

The label for the grouping variable, usually the countries (i.e., by="IDCNTRYL"), but could be any other categorical variable.

data

An R object, normally a data frame, containing the data from TIMSS.

std

A logical value. If TRUE standardised regression coefficients are calculated.

export

A logical value. If TRUE, the output is exported to a file in comma-separated value format (.csv) that can be opened from LibreOffice or Excel.

name

The name of the exported file.

folder

The folder where the exported file is located.

config

Object with configuration of a given study. Should contain the slot `prefixes` with prefixes of filenames with the student, home, school, and teacher data.

See Also

piaac.reg.pv, pirls.reg.pv, pisa.reg.pv, timss.reg.pv

Examples

Run this code
if (FALSE) {
intsvy.reg.pv(pvnames=paste0("PV",1:10,"MATH") , x="ST04Q01", 
by = "IDCNTRYL",data=pisa, config=pisa_conf)

intsvy.reg.pv(pvnames=paste0("PVLIT", 1:10), x="GENDER_R", by = "CNTRYID", 
data=piaac, config=piaac_conf)

intsvy.reg.pv(pvnames=paste0("BSMMAT0", 1:5), by="IDCNTRYL", x="ITSEX", 
data=timss8g, config=timss8_conf)

intsvy.reg.pv(pvnames=paste0("ASRREA0", 1:5), by="IDCNTRYL", x="ITSEX", 
data=pirls, config=pirls_conf)
}

Run the code above in your browser using DataLab