## Not run:
# library(intubate)
# library(magrittr)
# library(CORElearn)
#
# ## ntbt_attrEval: Attribute evaluation
# ## Original function to interface
# attrEval(Species ~ ., iris, estimator = "ReliefFexpRank", ReliefIterations = 30)
#
# ## The interface puts data as first parameter
# ntbt_attrEval(iris, Species ~ ., estimator = "ReliefFexpRank", ReliefIterations = 30)
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_attrEval(Species ~ ., estimator = "ReliefFexpRank", ReliefIterations = 30)
#
# ## ntbt_CoreModel: Build a classification or regression model
# trainIdxs <- sample(x=nrow(iris), size=0.7*nrow(iris), replace=FALSE)
# testIdxs <- c(1:nrow(iris))[-trainIdxs]
#
# ## Original function to interface
# CoreModel(Species ~ ., iris[trainIdxs,], model = "rf",
# selectionEstimator = "MDL", minNodeWeightRF = 5,
# rfNoTrees = 100, maxThreads = 1)
#
# ## The interface puts data as first parameter
# ntbt_CoreModel(iris[trainIdxs,], Species ~ ., model = "rf",
# selectionEstimator = "MDL", minNodeWeightRF = 5,
# rfNoTrees = 100, maxThreads = 1)
#
# ## so it can be used easily in a pipeline.
# iris[trainIdxs,] %>%
# ntbt_CoreModel(Species ~ ., model = "rf",
# selectionEstimator = "MDL", minNodeWeightRF = 5,
# rfNoTrees = 100, maxThreads = 1)
#
# ## ntbt_discretize: Discretization of numeric attributes
# ## Original function to interface
# discretize(Species ~ ., iris, method = "greedy", estimator = "ReliefFexpRank")
#
# ## The interface puts data as first parameter
# ntbt_discretize(iris, Species ~ ., method = "greedy", estimator = "ReliefFexpRank")
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_discretize(Species ~ ., method = "greedy", estimator = "ReliefFexpRank")
#
# ## ntbt_ordEval: Evaluation of ordered attributes
# dat <- ordDataGen(200)
#
# ## Original function to interface
# ordEval(class ~ ., dat, ordEvalNoRandomNormalizers=100)
#
# ## The interface puts data as first parameter
# ntbt_ordEval(dat, class ~ ., ordEvalNoRandomNormalizers=100)
#
# ## so it can be used easily in a pipeline.
# dat %>%
# ntbt_ordEval(class ~ ., ordEvalNoRandomNormalizers=100)
# ## End(Not run)
Run the code above in your browser using DataLab