## Not run:
# library(intubate)
# library(magrittr)
# library(MASS)
#
# ## corresp
# ## Original function to interface
# corresp(~ Age + Eth, data = quine)
#
# ## The interface reverses the order of data and formula
# ntbt_corresp(data = quine, ~ Age + Eth)
#
# ## so it can be used easily in a pipeline.
# quine %>%
# ntbt_corresp(~ Age + Eth)
#
# ## glm.nb
# ## Original function to interface
# glm.nb(Days ~ Sex/(Age + Eth*Lrn), data = quine)
#
# ## The interface reverses the order of data and formula
# ntbt_glm.nb(data = quine, Days ~ Sex/(Age + Eth*Lrn))
#
# ## so it can be used easily in a pipeline.
# quine %>%
# ntbt_glm.nb(Days ~ Sex/(Age + Eth*Lrn))
#
# ## lda
# Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
# Sp = rep(c("s","c","v"), rep(50,3)))
#
# ## Original function to interface
# lda(Sp ~ ., Iris)
#
# ## The interface reverses the order of data and formula
# ntbt_lda(Iris, Sp ~ .)
#
# ## so it can be used easily in a pipeline.
# Iris %>%
# ntbt_lda(Sp ~ .)
#
# stackloss %>%
# ntbt_lda(stack.loss ~ .) %>%
# summary()
#
# ## lm.gls
# ## Original function to interface
# lm.gls(conc ~ uptake, CO2, W = diag(nrow(CO2)))
#
# ## The interface reverses the order of data and formula
# ntbt_lm.gls(CO2, conc ~ uptake, W = diag(nrow(CO2)))
#
# ## so it can be used easily in a pipeline.
# CO2 %>%
# ntbt_lm.gls(conc ~ uptake, W = diag(nrow(CO2)))
#
# ## lm.ridge
# ## Original function to interface
# lm.ridge(GNP.deflator ~ ., longley)
#
# ## The interface reverses the order of data and formula
# ntbt_lm.ridge(longley, GNP.deflator ~ .)
#
# ## so it can be used easily in a pipeline.
# longley %>%
# ntbt_lm.ridge(GNP.deflator ~ .)
#
# ## loglm
# ## Original function to interface
# xtCars93 <- xtabs(~ Type + Origin, Cars93)
# loglm(~ Type + Origin, xtCars93)
#
# ## The interface reverses the order of data and formula
# xtCars93 <- ntbt_xtabs(Cars93, ~ Type + Origin)
# ntbt_loglm(xtCars93, ~ Type + Origin)
#
# ## so it can be used easily in a pipeline.
# Cars93 %>%
# ntbt_xtabs(~ Type + Origin) %>%
# ntbt_loglm(~ Type + Origin)
#
# ## logtrans
# ## Original function to interface
# logtrans(Days ~ Age*Sex*Eth*Lrn, data = quine,
# alpha = seq(0.75, 6.5, len=20))
#
# ## The interface reverses the order of data and formula
# ntbt_logtrans(data = quine, Days ~ Age*Sex*Eth*Lrn,
# alpha = seq(0.75, 6.5, len=20))
#
# ## so it can be used easily in a pipeline.
# quine %>%
# ntbt_logtrans(Days ~ Age*Sex*Eth*Lrn,
# alpha = seq(0.75, 6.5, len=20))
#
# ## polr
# op <- options(contrasts = c("contr.treatment", "contr.poly"))
#
# ## Original function to interface
# polr(Sat ~ Infl + Type + Cont, housing)
#
# ## The interface reverses the order of data and formula
# ntbt_polr(housing, Sat ~ Infl + Type + Cont)
#
# ## so it can be used easily in a pipeline.
# housing %>%
# ntbt_polr(Sat ~ Infl + Type + Cont)
#
# options(op)
#
# ## qda
# set.seed(123) ## make reproducible
# tr <- sample(1:50, 25)
#
# iris3df <- data.frame(cl = factor(c(rep("s",25), rep("c",25), rep("v",25))),
# train = rbind(iris3[tr,,1], iris3[tr,,2], iris3[tr,,3]))
#
# ## Original function to interface
# qda(cl ~ ., iris3df)
#
# ## The interface reverses the order of data and formula
# ntbt_qda(iris3df, cl ~ .)
#
# ## so it can be used easily in a pipeline.
# iris3df %>%
# ntbt_qda(cl ~ .)
#
# ## rlm
# ## Original function to interface
# rlm(stack.loss ~ ., stackloss)
#
# ## The interface reverses the order of data and formula
# ntbt_rlm(stackloss, stack.loss ~ .)
#
# ## so it can be used easily in a pipeline.
# stackloss %>%
# ntbt_rlm(stack.loss ~ .) %>%
# summary()
#
# stackloss %>%
# ntbt_rlm(stack.loss ~ ., psi = psi.hampel, init = "lts") %>%
# summary()
#
# stackloss %>%
# ntbt_rlm(stack.loss ~ ., psi = psi.bisquare) %>%
# summary()
# ## End(Not run)
Run the code above in your browser using DataLab