## Not run:
# library(intubate)
# library(magrittr)
# library(adabag)
#
#
# ## ntbt_autoprune: Builds automatically a pruned tree of class rpart
# ## Original function to interface
# autoprune(Species ~ ., data = iris)
#
# ## The interface puts data as first parameter
# ntbt_autoprune(iris, Species ~ .)
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_autoprune(Species ~ .)
#
# ## ntbt_bagging: Applies the Bagging algorithm to a data set
# library(rpart)
# data(iris)
#
# ## Original function to interface
# bagging(Species ~ ., data = iris, mfinal = 10)
#
# ## The interface puts data as first parameter
# ntbt_bagging(iris, Species ~ ., mfinal = 10)
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_bagging(Species ~ ., mfinal = 10)
#
#
#
# ## Original function to interface
# iris.baggingcv <- bagging.cv(Species ~ ., v = 2, data = iris, mfinal = 10,
# control = rpart.control(cp = 0.01))
# iris.baggingcv[-1]
#
# ## The interface puts data as first parameter
# iris.baggingcv <- ntbt_bagging.cv(iris, Species ~ ., v = 2, mfinal = 10,
# control = rpart.control(cp = 0.01))
# iris.baggingcv[-1]
#
# ## so it can be used easily in a pipeline.
# iris.baggingcv <- iris %>%
# ntbt_bagging.cv(Species ~ ., v = 2, mfinal = 10,
# control = rpart.control(cp = 0.01))
# iris.baggingcv[-1]
#
#
# ## ntbt_boosting: Applies the AdaBoost.M1 and SAMME algorithms to a data set
# ## Original function to interface
# boosting(Species ~ ., data = iris, boos = TRUE, mfinal = 5)
#
# ## The interface puts data as first parameter
# ntbt_boosting(iris, Species ~ ., boos = TRUE, mfinal = 5)
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_boosting(Species ~ ., boos = TRUE, mfinal = 5)
#
#
# ## ntbt_boosting.cv: Runs v-fold cross validation with AdaBoost.M1 or SAMME
# ## Original function to interface
# iris.boostcv <- boosting.cv(Species ~ ., v = 2, data = iris, mfinal = 10,
# control = rpart.control(cp = 0.01))
# iris.boostcv[-1]
#
# ## The interface puts data as first parameter
# iris.boostcv <- ntbt_boosting.cv(iris, Species ~ ., v = 2, mfinal = 10,
# control = rpart.control(cp = 0.01))
# iris.boostcv[-1]
#
# ## so it can be used easily in a pipeline.
# iris.boostcv <- iris %>%
# ntbt_boosting.cv(Species ~ ., v = 2, mfinal = 10,
# control = rpart.control(cp = 0.01))
# iris.boostcv[-1]
# ## End(Not run)
Run the code above in your browser using DataLab