Learn R Programming

intubate (version 1.0.0)

aod: Interfaces for aod package for data science pipelines.

Description

Interfaces to aod functions that can be used in a pipeline implemented by magrittr.

Usage

ntbt_betabin(data, ...) ntbt_donner(data, ...) ntbt_negbin(data, ...) ntbt_quasibin(data, ...) ntbt_quasipois(data, ...) ntbt_raoscott(data, ...) ntbt_splitbin(data, ...)

Arguments

data
data frame, tibble, list, ...
...
Other arguments passed to the corresponding interfaced function.

Value

Object returned by interfaced function.

Details

Interfaces call their corresponding interfaced function.

Examples

Run this code
## Not run: 
# library(intubate)
# library(magrittr)
# library(aod)
# 
# 
# ## ntbt_betabin: beta-binomial generalized linear model accounting
# ##               for overdispersion in clustered binomial data (n, y)
# data(orob2)
# ## Original function to interface
# betabin(cbind(y, n - y) ~ seed, ~ 1, data = orob2)
# 
# ## The interface puts data as first parameter
# ntbt_betabin(orob2, cbind(y, n - y) ~ seed, ~ 1)
# 
# ## so it can be used easily in a pipeline.
# orob2 %>%
#   ntbt_betabin(cbind(y, n - y) ~ seed, ~ 1)
# 
# 
# ## ntbt_donner: Test of Proportion Homogeneity using Donner's Adjustment
# data(rats)
# 
# ## Original function to interface
# donner(formula = cbind(y, n - y) ~ group, data = rats)
# 
# ## The interface puts data as first parameter
# ntbt_donner(rats, formula = cbind(y, n - y) ~ group)
# 
# ## so it can be used easily in a pipeline.
# rats %>%
#   ntbt_donner(formula = cbind(y, n - y) ~ group)
# 
# 
# ## ntbt_negbin: negative-binomial log linear model accounting
# ##              for overdispersion in counts y
# data(salmonella)
# ## Original function to interface
# negbin(y ~ log(dose + 10) + dose, ~ 1, salmonella)
# 
# ## The interface puts data as first parameter
# ntbt_negbin(salmonella, y ~ log(dose + 10) + dose, ~ 1)
# 
# ## so it can be used easily in a pipeline.
# salmonella %>%
#   ntbt_negbin(y ~ log(dose + 10) + dose, ~ 1)
# 
# 
# ## ntbt_quasibin: Quasi-Likelihood Model for Proportions
# data(orob2) 
# ## Original function to interface
# quasibin(cbind(y, n - y) ~ seed * root, data = orob2, phi = 0) 
# 
# ## The interface puts data as first parameter
# ntbt_quasibin(orob2, cbind(y, n - y) ~ seed * root, phi = 0)
# 
# ## so it can be used easily in a pipeline.
# orob2 %>%
#   ntbt_quasibin(cbind(y, n - y) ~ seed * root, phi = 0)
# 
# 
# ## ntbt_quasipois: Quasi-Likelihood Model for Counts
# data(salmonella)
# 
# ## Original function to interface
# quasipois(y ~ log(dose + 10) + dose, data = salmonella)
# 
# ## The interface puts data as first parameter
# ntbt_quasipois(salmonella, y ~ log(dose + 10) + dose)
# 
# ## so it can be used easily in a pipeline.
# salmonella %>%
#   ntbt_quasipois(y ~ log(dose + 10) + dose)
# 
# 
# ## ntbt_raoscott: Test of Proportion Homogeneity using Rao and Scott's Adjustment
# data(rats)
# 
# ## Original function to interface
# raoscott(cbind(y, n - y) ~ group, data = rats)
# 
# ## The interface puts data as first parameter
# ntbt_raoscott(rats, cbind(y, n - y) ~ group)
# 
# ## so it can be used easily in a pipeline.
# rats %>%
#   ntbt_raoscott(cbind(y, n - y) ~ group)
# 
# 
# ## ntbt_splitbin: Split Grouped Data Into Individual Data
# mydata <- data.frame(
#     success = c(0, 1, 0, 1),
#     f1 = c("A", "A", "B", "B"),
#     f2 = c("C", "D", "C", "D"),
#     n = c(4, 2, 1, 3)
#     )
# ## Original function to interface
# splitbin(formula = n ~ f1 + f2 + success, data = mydata)
# 
# ## The interface puts data as first parameter
# ntbt_splitbin(mydata, formula = n ~ f1 + f2 + success)
# 
# ## so it can be used easily in a pipeline.
# mydata %>%
#   ntbt_splitbin(formula = n ~ f1 + f2 + success)
# ## End(Not run)

Run the code above in your browser using DataLab