## Not run:
# library(intubate)
# library(magrittr)
# library(arm)
#
# ## ntbt_bayesglm: Bayesian generalized linear models
# n <- 100
# x1 <- rnorm (n)
# x2 <- rbinom (n, 1, .5)
# b0 <- 1
# b1 <- 1.5
# b2 <- 2
# y <- rbinom(n, 1, invlogit(b0+b1*x1+b2*x2))
#
# dta <- data.frame(y, x1, x2)
#
# ## Original function to interface
# bayesglm(y ~ x1 + x2, family = binomial(link="logit"), data = dta,
# prior.scale = Inf, prior.df = Inf)
#
# ## The interface puts data as first parameter
# ntbt_bayesglm(dta, y ~ x1 + x2, family = binomial(link="logit"),
# prior.scale = Inf, prior.df = Inf)
#
# ## so it can be used easily in a pipeline.
# dta %>%
# ntbt_bayesglm(y ~ x1 + x2, family = binomial(link="logit"),
# prior.scale = Inf, prior.df = Inf)
#
#
# ## ntbt_bayespolr: Bayesian Ordered Logistic or Probit Regression
# ## Original function to interface
# bayespolr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing,
# prior.scale = Inf, prior.df = Inf)
#
# ## The interface puts data as first parameter
# ntbt_bayespolr(housing, Sat ~ Infl + Type + Cont, weights = Freq,
# prior.scale = Inf, prior.df = Inf)
#
# ## so it can be used easily in a pipeline.
# housing %>%
# ntbt_bayespolr(Sat ~ Infl + Type + Cont, weights = Freq,
# prior.scale = Inf, prior.df = Inf)
# ## End(Not run)
Run the code above in your browser using DataLab