## Not run:
# library(intubate)
# library(magrittr)
# library(car)
#
# ## ntbt_Boxplot: Boxplots With Point Identification
# ## Original function to interface
# Boxplot(income ~ type, data = Prestige)
#
# ## The interface puts data as first parameter
# ntbt_Boxplot(Prestige, income ~ type)
#
# ## so it can be used easily in a pipeline.
# Prestige %>%
# ntbt_Boxplot(income ~ type)
#
#
# ## ntbt_boxTidwell: Box-Tidwell Transformations
# ## Original function to interface
# boxTidwell(prestige ~ income + education, ~ type + poly(women, 2), data = Prestige)
#
# ## The interface puts data as first parameter
# ntbt_boxTidwell(Prestige, prestige ~ income + education, ~ type + poly(women, 2))
#
# ## so it can be used easily in a pipeline.
# Prestige %>%
# ntbt_boxTidwell(prestige ~ income + education, ~ type + poly(women, 2))
#
#
# ## ntbt_densityPlot: Nonparametric Density Estimates
# ## Original function to interface
# densityPlot(income ~ type, data = Prestige)
#
# ## The interface puts data as first parameter
# ntbt_densityPlot(Prestige, income ~ type)
#
# ## so it can be used easily in a pipeline.
# Prestige %>%
# ntbt_densityPlot(income ~ type)
#
#
# ## ntbt_invTranPlot: Choose a Predictor Transformation Visually or Numerically
# ## Original function to interface
# invTranPlot(infant.mortality ~ gdp, data = UN)
#
# ## The interface puts data as first parameter
# ntbt_invTranPlot(UN, infant.mortality ~ gdp)
#
# ## so it can be used easily in a pipeline.
# UN %>%
# ntbt_invTranPlot(infant.mortality ~ gdp)
#
# ## ntbt_leveneTest: Levene's test for homogeneity of variance across groups
# ## Original function to interface
# leveneTest(conformity ~ fcategory*partner.status, data = Moore)
#
# ## The interface puts data as first parameter
# ntbt_leveneTest(Moore, conformity ~ fcategory*partner.status)
#
# ## so it can be used easily in a pipeline.
# Moore %>%
# ntbt_leveneTest(conformity ~ fcategory*partner.status)
#
# ## ntbt_powerTransform: Finding Univariate or Multivariate Power Transformations
# ## Original function to interface
# powerTransform(cycles ~ len + amp + load, Wool)
#
# ## The interface puts data as first parameter
# ntbt_powerTransform(Wool, cycles ~ len + amp + load)
#
# ## so it can be used easily in a pipeline.
# Wool %>%
# ntbt_powerTransform(cycles ~ len + amp + load)
#
#
# ## ntbt_scatter3d: Three-Dimensional Scatterplots and Point Identification
# ## Original function to interface
# ## NOTE: need rgl, mgcv, and interactive mode. Commented out.
# #scatter3d(prestige ~ income + education, data = Duncan)
#
# ## The interface puts data as first parameter
# #ntbt_scatter3d(Duncan, prestige ~ income + education)
#
# ## so it can be used easily in a pipeline.
# #Duncan %>%
# # ntbt_scatter3d(prestige ~ income + education)
#
#
# ## ntbt_scatterplot: Scatterplots with Boxplots
# ## Original function to interface
# scatterplot(prestige ~ income, data = Prestige, ellipse = TRUE)
#
# ## The interface puts data as first parameter
# ntbt_scatterplot(Prestige, prestige ~ income, ellipse = TRUE)
#
# ## so it can be used easily in a pipeline.
# Prestige %>%
# ntbt_scatterplot(prestige ~ income, ellipse = TRUE)
#
# ## ntbt_scatterplotMatrix: Scatterplot Matrices
# ## Original function to interface
# scatterplotMatrix(~ income + education + prestige | type, data = Duncan)
#
# ## The interface puts data as first parameter
# ntbt_scatterplotMatrix(Duncan, ~ income + education + prestige | type)
#
# ## so it can be used easily in a pipeline.
# Duncan %>%
# ntbt_scatterplotMatrix(~ income + education + prestige | type)
#
# ## ntbt_spreadLevelPlot: Spread-Level Plots
# ## Original function to interface
# spreadLevelPlot(interlocks + 1 ~ nation, data = Ornstein)
#
# ## The interface puts data as first parameter
# ntbt_spreadLevelPlot(Ornstein, interlocks + 1 ~ nation)
#
# ## so it can be used easily in a pipeline.
# Ornstein %>%
# ntbt_spreadLevelPlot(interlocks + 1 ~ nation)
#
# ## ntbt_symbox: Boxplots for transformations to symmetry
# ## Original function to interface
# symbox(~ income, data = Prestige)
#
# ## The interface puts data as first parameter
# ntbt_symbox(Prestige, ~ income)
#
# ## so it can be used easily in a pipeline.
# Prestige %>%
# ntbt_symbox(~ income)
# ## End(Not run)
Run the code above in your browser using DataLab