Learn R Programming

intubate (version 1.0.0)

car: Interfaces for car package for data science pipelines.

Description

Interfaces to car functions that can be used in a pipeline implemented by magrittr.

Usage

ntbt_Boxplot(data, ...) ntbt_boxTidwell(data, ...) ntbt_densityPlot(data, ...) ntbt_invTranPlot(data, ...) ntbt_leveneTest(data, ...) ntbt_powerTransform(data, ...) ntbt_scatter3d(data, ...) ntbt_scatterplot(data, ...) ntbt_scatterplotMatrix(data, ...) ntbt_spreadLevelPlot(data, ...) ntbt_symbox(data, ...)

Arguments

data
data frame, tibble, list, ...
...
Other arguments passed to the corresponding interfaced function.

Value

Object returned by interfaced function.

Details

Interfaces call their corresponding interfaced function.

Examples

Run this code
## Not run: 
# library(intubate)
# library(magrittr)
# library(car)
# 
# ## ntbt_Boxplot: Boxplots With Point Identification
# ## Original function to interface
# Boxplot(income ~ type, data = Prestige)
# 
# ## The interface puts data as first parameter
# ntbt_Boxplot(Prestige, income ~ type)
# 
# ## so it can be used easily in a pipeline.
# Prestige %>%
#   ntbt_Boxplot(income ~ type)
# 
# 
# ## ntbt_boxTidwell: Box-Tidwell Transformations
# ## Original function to interface
# boxTidwell(prestige ~ income + education, ~ type + poly(women, 2), data = Prestige)
# 
# ## The interface puts data as first parameter
# ntbt_boxTidwell(Prestige, prestige ~ income + education, ~ type + poly(women, 2))
# 
# ## so it can be used easily in a pipeline.
# Prestige %>%
#   ntbt_boxTidwell(prestige ~ income + education, ~ type + poly(women, 2))
# 
# 
# ## ntbt_densityPlot: Nonparametric Density Estimates
# ## Original function to interface
# densityPlot(income ~ type, data = Prestige)
# 
# ## The interface puts data as first parameter
# ntbt_densityPlot(Prestige, income ~ type)
# 
# ## so it can be used easily in a pipeline.
# Prestige %>%
#   ntbt_densityPlot(income ~ type)
# 
# 
# ## ntbt_invTranPlot: Choose a Predictor Transformation Visually or Numerically
# ## Original function to interface
# invTranPlot(infant.mortality ~ gdp, data = UN)
# 
# ## The interface puts data as first parameter
# ntbt_invTranPlot(UN, infant.mortality ~ gdp)
# 
# ## so it can be used easily in a pipeline.
# UN %>%
#   ntbt_invTranPlot(infant.mortality ~ gdp)
# 
# ## ntbt_leveneTest: Levene's test for homogeneity of variance across groups
# ## Original function to interface
# leveneTest(conformity ~ fcategory*partner.status, data = Moore)
# 
# ## The interface puts data as first parameter
# ntbt_leveneTest(Moore, conformity ~ fcategory*partner.status)
# 
# ## so it can be used easily in a pipeline.
# Moore %>%
#   ntbt_leveneTest(conformity ~ fcategory*partner.status)
# 
# ## ntbt_powerTransform: Finding Univariate or Multivariate Power Transformations
# ## Original function to interface
# powerTransform(cycles ~ len + amp + load, Wool)
# 
# ## The interface puts data as first parameter
# ntbt_powerTransform(Wool, cycles ~ len + amp + load)
# 
# ## so it can be used easily in a pipeline.
# Wool %>%
#   ntbt_powerTransform(cycles ~ len + amp + load)
# 
# 
# ## ntbt_scatter3d: Three-Dimensional Scatterplots and Point Identification
# ## Original function to interface
# ## NOTE: need rgl, mgcv, and interactive mode. Commented out.
# #scatter3d(prestige ~ income + education, data = Duncan)
# 
# ## The interface puts data as first parameter
# #ntbt_scatter3d(Duncan, prestige ~ income + education)
# 
# ## so it can be used easily in a pipeline.
# #Duncan %>%
# #  ntbt_scatter3d(prestige ~ income + education)
# 
# 
# ## ntbt_scatterplot: Scatterplots with Boxplots
# ## Original function to interface
# scatterplot(prestige ~ income, data = Prestige, ellipse = TRUE)
# 
# ## The interface puts data as first parameter
# ntbt_scatterplot(Prestige, prestige ~ income, ellipse = TRUE)
# 
# ## so it can be used easily in a pipeline.
# Prestige %>%
#   ntbt_scatterplot(prestige ~ income, ellipse = TRUE)
# 
# ## ntbt_scatterplotMatrix: Scatterplot Matrices
# ## Original function to interface
# scatterplotMatrix(~ income + education + prestige | type, data = Duncan)
# 
# ## The interface puts data as first parameter
# ntbt_scatterplotMatrix(Duncan, ~ income + education + prestige | type)
# 
# ## so it can be used easily in a pipeline.
# Duncan %>%
#   ntbt_scatterplotMatrix(~ income + education + prestige | type)
# 
# ## ntbt_spreadLevelPlot: Spread-Level Plots
# ## Original function to interface
# spreadLevelPlot(interlocks + 1 ~ nation, data = Ornstein)
# 
# ## The interface puts data as first parameter
# ntbt_spreadLevelPlot(Ornstein, interlocks + 1 ~ nation)
# 
# ## so it can be used easily in a pipeline.
# Ornstein %>%
#   ntbt_spreadLevelPlot(interlocks + 1 ~ nation)
# 
# ## ntbt_symbox: Boxplots for transformations to symmetry
# ## Original function to interface
# symbox(~ income, data = Prestige)
# 
# ## The interface puts data as first parameter
# ntbt_symbox(Prestige, ~ income)
# 
# ## so it can be used easily in a pipeline.
# Prestige %>%
#   ntbt_symbox(~ income)
# ## End(Not run)

Run the code above in your browser using DataLab