Learn R Programming

intubate (version 1.0.0)

coin: Interfaces for coin package for data science pipelines.

Description

Interfaces to coin functions that can be used in a pipeline implemented by magrittr.

Usage

ntbt_ansari_test(data, ...) ntbt_chisq_test(data, ...) ntbt_cmh_test(data, ...) ntbt_conover_test(data, ...) ntbt_fisyat_test(data, ...) ntbt_fligner_test(data, ...) ntbt_friedman_test(data, ...) ntbt_independence_test(data, ...) ntbt_klotz_test(data, ...) ntbt_koziol_test(data, ...) ntbt_kruskal_test(data, ...) ntbt_lbl_test(data, ...) ntbt_logrank_test(data, ...) ntbt_maxstat_test(data, ...) ntbt_median_test(data, ...) ntbt_mh_test(data, ...) ntbt_mood_test(data, ...) ntbt_normal_test(data, ...) ntbt_oneway_test(data, ...) ntbt_quade_test(data, ...) ntbt_quadrant_test(data, ...) ntbt_sign_test(data, ...) ntbt_symmetry_test(data, ...) ntbt_taha_test(data, ...) ntbt_savage_test(data, ...) ntbt_spearman_test(data, ...) ntbt_wilcox_test(data, ...) ntbt_wilcoxsign_test(data, ...)

Arguments

data
data frame, tibble, list, ...
...
Other arguments passed to the corresponding interfaced function.

Value

Object returned by interfaced function.

Details

Interfaces call their corresponding interfaced function.

Examples

Run this code
## Not run: 
# library(intubate)
# library(magrittr)
# library(coin)
# 
# ## Tests of Independence in Two- or Three-Way Contingency Tables
# ## Please contribute better example
# ## Original function to interface
# chisq_test(Plant ~ Type, data = CO2)
# cmh_test(Plant ~ Type, data = CO2)
# lbl_test(Plant ~ Type, data = CO2)
# 
# ## The interface puts data as first parameter
# ntbt_chisq_test(CO2, Plant ~ Type)
# ntbt_cmh_test(CO2, Plant ~ Type)
# ntbt_lbl_test(CO2, Plant ~ Type)
# 
# ## so it can be used easily in a pipeline.
# CO2 %>%
#   ntbt_chisq_test(Plant ~ Type)
# CO2 %>%
#   ntbt_cmh_test(Plant ~ Type)
# CO2 %>%
#   ntbt_lbl_test(Plant ~ Type)
# 
# 
# ## Correlation Tests
# ## Original function to interface
# ## Asymptotic Spearman test
# spearman_test(CONT ~ INTG, data = USJudgeRatings)
# ## Asymptotic Fisher-Yates test
# fisyat_test(CONT ~ INTG, data = USJudgeRatings)
# ## Asymptotic quadrant test
# quadrant_test(CONT ~ INTG, data = USJudgeRatings)
# ## Asymptotic Koziol-Nemec test
# koziol_test(CONT ~ INTG, data = USJudgeRatings)
# 
# ## The interface puts data as first parameter
# ## Asymptotic Spearman test
# ntbt_spearman_test(USJudgeRatings, CONT ~ INTG)
# ## Asymptotic Fisher-Yates test
# ntbt_fisyat_test(USJudgeRatings, CONT ~ INTG)
# ## Asymptotic quadrant test
# ntbt_quadrant_test(USJudgeRatings, CONT ~ INTG)
# ## Asymptotic Koziol-Nemec test
# ntbt_koziol_test(USJudgeRatings, CONT ~ INTG)
# 
# ## so it can be used easily in a pipeline.
# ## Asymptotic Spearman test
# USJudgeRatings %>%
#   ntbt_spearman_test(CONT ~ INTG)
# ## Asymptotic Fisher-Yates test
# USJudgeRatings %>%
#   ntbt_fisyat_test(CONT ~ INTG)
# ## Asymptotic quadrant test
# USJudgeRatings %>%
#   ntbt_quadrant_test(CONT ~ INTG)
# ## Asymptotic Koziol-Nemec test
# USJudgeRatings %>%
#   ntbt_koziol_test(CONT ~ INTG)
# 
# ## ntbt_independence_test: General Independence Test
# ## Original function to interface
# independence_test(asat ~ group, data = asat, distribution = "exact",
#                   alternative = "greater", 
#                   ytrafo = function(data)
#                     trafo(data, numeric_trafo = normal_trafo),
#                   xtrafo = function(data)
#                       trafo(data, factor_trafo = function(x)
#                           matrix(x == levels(x)[1], ncol = 1)))
# 
# ## The interface puts data as first parameter
# ntbt_independence_test(asat, asat ~ group, distribution = "exact",
#                        alternative = "greater", 
#                        ytrafo = function(data)
#                          trafo(data, numeric_trafo = normal_trafo),
#                        xtrafo = function(data)
#                          trafo(data, factor_trafo = function(x)
#                            matrix(x == levels(x)[1], ncol = 1)))
# 
# ## so it can be used easily in a pipeline.
# asat %>%
#   ntbt_independence_test(asat ~ group, distribution = "exact",
#                          alternative = "greater", 
#                          ytrafo = function(data)
#                            trafo(data, numeric_trafo = normal_trafo),
#                          xtrafo = function(data)
#                            trafo(data, factor_trafo = function(x)
#                              matrix(x == levels(x)[1], ncol = 1)))
# 
# 
# ## Two- and K-Sample Location Tests
# ## Tritiated Water Diffusion Across Human Chorioamnion
# ## Hollander and Wolfe (1999, p. 110, Tab. 4.1)
# diffusion <- data.frame(
#     pd = c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46,
#            1.15, 0.88, 0.90, 0.74, 1.21),
#     age = factor(rep(c("At term", "12-26 Weeks"), c(10, 5)))
# )
# ex <- data.frame(
#     y = c(3, 4, 8, 9, 1, 2, 5, 6, 7),
#     x = factor(rep(c("no", "yes"), c(4, 5)))
# )
# 
# ## Original function to interface
# kruskal_test(pd ~ age, data = diffusion, distribution = "exact")
# median_test(y ~ x, data = ex, distribution = "exact")
# normal_test(pd ~ age, data = diffusion, distribution = "exact", conf.int = TRUE)
# oneway_test(pd ~ age, data = diffusion)
# savage_test(pd ~ age, data = diffusion, distribution = "exact", conf.int = TRUE)
# wilcox_test(pd ~ age, data = diffusion, distribution = "exact", conf.int = TRUE)
# 
# ## The interface puts data as first parameter
# ntbt_kruskal_test(diffusion, pd ~ age, distribution = "exact")
# ntbt_median_test(ex, y ~ x, distribution = "exact")
# ntbt_normal_test(diffusion, pd ~ age, distribution = "exact", conf.int = TRUE)
# ntbt_oneway_test(diffusion, pd ~ age)
# ntbt_savage_test(diffusion, pd ~ age, distribution = "exact", conf.int = TRUE)
# ntbt_wilcox_test(diffusion, pd ~ age, distribution = "exact", conf.int = TRUE)
# 
# ## so it can be used easily in a pipeline.
# diffusion %>%
#   ntbt_kruskal_test(pd ~ age, distribution = "exact")
# ex %>%
#   ntbt_median_test(y ~ x, distribution = "exact")
# diffusion %>%
#   ntbt_normal_test(pd ~ age, distribution = "exact", conf.int = TRUE)
# diffusion %>%
#   ntbt_oneway_test(pd ~ age)
# diffusion %>%
#   ntbt_savage_test(pd ~ age, distribution = "exact", conf.int = TRUE)
# diffusion %>%
#   ntbt_wilcox_test(pd ~ age, distribution = "exact", conf.int = TRUE)
# 
# performance <- matrix(
#     c(794, 150,
#        86, 570),
#     nrow = 2, byrow = TRUE,
#     dimnames = list(
#          "First" = c("Approve", "Disprove"),
#         "Second" = c("Approve", "Disprove")
#     )
# )
# 
# ## ntbt_mh_test: Marginal Homogeneity Tests
# ## Effectiveness of different media for the growth of diphtheria
# ## Cochran (1950, Tab. 2)
# cases <- c(4, 2, 3, 1, 59)
# n <- sum(cases)
# cochran <- data.frame(
#     diphtheria = factor(
#         unlist(rep(list(c(1, 1, 1, 1),
#                         c(1, 1, 0, 1),
#                         c(0, 1, 1, 1),
#                         c(0, 1, 0, 1),
#                         c(0, 0, 0, 0)),
#                    cases))
#     ),
#     media = factor(rep(LETTERS[1:4], n)),
#     case =  factor(rep(seq_len(n), each = 4))
# )
# 
# ## Original function to interface
# mh_test(diphtheria ~ media | case, data = cochran)
# 
# ## The interface puts data as first parameter
# ntbt_mh_test(cochran, diphtheria ~ media | case)
# 
# ## so it can be used easily in a pipeline.
# cochran %>%
#   ntbt_mh_test(diphtheria ~ media | case)
# 
# ## ntbt_maxstat_test: Generalized Maximally Selected Statistics
# ## Original function to interface
# maxstat_test(counts ~ coverstorey, data = treepipit)
# 
# ## The interface puts data as first parameter
# ntbt_maxstat_test(treepipit, counts ~ coverstorey)
# 
# ## so it can be used easily in a pipeline.
# treepipit %>%
#   ntbt_maxstat_test(counts ~ coverstorey)
# 
# 
# ## Two- and K-Sample Scale Tests
# ## Serum Iron Determination Using Hyland Control Sera
# ## Hollander and Wolfe (1999, p. 147, Tab 5.1)
# sid <- data.frame(
#     serum = c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
#               101, 96, 97, 102, 107, 113, 116, 113, 110, 98,
#               107, 108, 106, 98, 105, 103, 110, 105, 104,
#               100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99),
#     method = gl(2, 20, labels = c("Ramsay", "Jung-Parekh"))
# )
# 
# ## Original function to interface
# ansari_test(serum ~ method, data = sid)
# conover_test(serum ~ method, data = sid)
# fligner_test(serum ~ method, data = sid)
# klotz_test(serum ~ method, data = sid)
# mood_test(serum ~ method, data = sid)
# taha_test(serum ~ method, data = sid)
# 
# ## The interface puts data as first parameter
# ntbt_ansari_test(sid, serum ~ method)
# ntbt_conover_test(sid, serum ~ method)
# ntbt_fligner_test(sid, serum ~ method)
# ntbt_klotz_test(sid, serum ~ method)
# ntbt_mood_test(sid, serum ~ method)
# ntbt_taha_test(sid, serum ~ method)
# 
# ## so it can be used easily in a pipeline.
# sid %>%
#   ntbt_ansari_test(serum ~ method)
# sid %>%
#   ntbt_conover_test(serum ~ method)
# sid %>%
#   ntbt_fligner_test(serum ~ method)
# sid %>%
#   ntbt_klotz_test(serum ~ method)
# sid %>%
#   ntbt_mood_test(serum ~ method)
# sid %>%
#   ntbt_taha_test(serum ~ method)
# 
# ## ntbt_logrank_test: Two- and K-Sample Tests for Censored Data
# ## Example data (Callaert, 2003, Tab.1)
# callaert <- data.frame(
#     time = c(1, 1, 5, 6, 6, 6, 6, 2, 2, 2, 3, 4, 4, 5, 5),
#     group = factor(rep(0:1, c(7, 8)))
# )
# ## Original function to interface
# logrank_test(Surv(time) ~ group, data = callaert, distribution = "exact")
# 
# ## The interface puts data as first parameter
# ntbt_logrank_test(callaert, Surv(time) ~ group, distribution = "exact")
# 
# ## so it can be used easily in a pipeline.
# callaert %>%
#   ntbt_logrank_test(Surv(time) ~ group, distribution = "exact")
# 
# 
# ## ntbt_symmetry_test: General Symmetry Test
# ## One-sided exact Fisher-Pitman test for paired observations
# y1 <- c(1.83,  0.50,  1.62,  2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
# y2 <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
# dta <- data.frame(
#     y = c(y1, y2),
#     x = gl(2, length(y1)),
#     block = factor(rep(seq_along(y1), 2))
# )
# 
# ## Original function to interface
# symmetry_test(y ~ x | block, data = dta, distribution = "exact", alternative = "greater")
# 
# ## The interface puts data as first parameter
# ntbt_symmetry_test(dta, y ~ x | block, distribution = "exact", alternative = "greater")
# 
# ## so it can be used easily in a pipeline.
# dta %>%
#   ntbt_symmetry_test(y ~ x | block, distribution = "exact", alternative = "greater")
# 
# 
# ## Symmetry Tests
# ## Data with explicit group and block information
# dta <- data.frame(y = c(y1, y2), x = gl(2, length(y1)),
#                   block = factor(rep(seq_along(y1), 2)))
# 
# ## Original function to interface
# ## For two samples, the sign test is equivalent to the Friedman test...
# sign_test(y ~ x | block, data = dta, distribution = "exact")
# friedman_test(y ~ x | block, data = dta, distribution = "exact")
# ## ...and the signed-rank test is equivalent to the Quade test
# wilcoxsign_test(y ~ x | block, data = dta, distribution = "exact")
# quade_test(y ~ x | block, data = dta, distribution = "exact")
# 
# ## The interface puts data as first parameter
# ntbt_sign_test(dta, y ~ x | block, distribution = "exact")
# ntbt_friedman_test(dta, y ~ x | block, distribution = "exact")
# ntbt_wilcoxsign_test(dta, y ~ x | block, distribution = "exact")
# ntbt_quade_test(dta, y ~ x | block, distribution = "exact")
# 
# ## so it can be used easily in a pipeline.
# dta %>%
#   ntbt_sign_test(y ~ x | block, distribution = "exact")
# dta %>%
#   ntbt_friedman_test(y ~ x | block, distribution = "exact")
# dta %>%
#   ntbt_wilcoxsign_test(y ~ x | block, distribution = "exact")
# dta %>%
#   ntbt_quade_test(y ~ x | block, distribution = "exact")
# ## End(Not run)

Run the code above in your browser using DataLab