## Not run:
# library(intubate)
# library(magrittr)
# library(glmx)
#
# ## ntbt_glmx: Generalized Linear Models with Extra Parameters
# set.seed(1)
# d <- data.frame(x = runif(200, -1, 1))
# d$y <- rnbinom(200, mu = exp(0 + 3 * d$x), size = 1)
# require("MASS")
#
# ## Original function to interface
# glmx(y ~ x, data = d, family = negative.binomial, xlink = "log", xstart = 0)
#
# ## The interface puts data as first parameter
# ntbt_glmx(d, y ~ x, family = negative.binomial, xlink = "log", xstart = 0)
#
# ## so it can be used easily in a pipeline.
# d %>%
# ntbt_glmx(y ~ x, family = negative.binomial, xlink = "log", xstart = 0)
#
#
# ## ntbt_hetglm: Heteroskedastic Binary Response GLMs
# n <- 200
# x <- rnorm(n)
# ystar <- 1 + x + rnorm(n, sd = exp(x))
# y <- factor(ystar > 0)
# dta <- data.frame(x, y)
#
# ## Original function to interface
# hetglm(y ~ x | 1, data = dta)
#
# ## The interface puts data as first parameter
# ntbt_hetglm(dta, y ~ x | 1)
#
# ## so it can be used easily in a pipeline.
# dta %>%
# ntbt_hetglm(y ~ x | 1)
# ## End(Not run)
Run the code above in your browser using DataLab