## Not run:
# library(intubate)
# library(magrittr)
# library(gplots)
#
#
# ## ntbt_bandplot: Plot x-y Points with Locally Smoothed Mean and Standard Deviation
# x <- 1:1000
# y <- rnorm(1000, mean=1, sd=1 + x/1000 )
# dta <- data.frame(x, y)
# rm(x, y)
#
# ## Original function to interface
# bandplot(y ~ x, data = dta)
#
# ## The interface puts data as first parameter
# ntbt_bandplot(dta, y ~ x)
#
# ## so it can be used easily in a pipeline.
# dta %>%
# ntbt_bandplot(y ~ x)
#
#
# ## ntbt_lowess: Scatter Plot Smoothing
# ## Original function to interface
# lowess(dist ~ speed, data = cars)
#
# ## The interface puts data as first parameter
# ntbt_lowess(cars, dist ~ speed)
#
# ## so it can be used easily in a pipeline.
# cars %>%
# ntbt_lowess(dist ~ speed)
#
# cars %>%
# ntbt_plot(dist ~ speed, main="lowess(cars)") %>%
# ntbt_lowess(dist ~ speed) %>%
# lines(col=2, lty=2)
#
#
# ## ntbt_overplot: Plot multiple variables on the same region,
# ## with appropriate axes
# data(rtPCR)
#
# ## Original function to interface
# overplot(RQ ~ Conc..ug.ml. | Test.Substance,
# data = rtPCR,
# subset = Detector == "ProbeType 1" & Conc..ug.ml. > 0,
# same.scale = TRUE,
# log="xy",
# f=3/4,
# main="Detector=ProbeType 1",
# xlab="Concentration (ug/ml)",
# ylab="Relative Gene Quantification"
# )## Original function to interface
#
# ## The interface puts data as first parameter
# ntbt_overplot(rtPCR,
# RQ ~ Conc..ug.ml. | Test.Substance,
# subset = Detector == "ProbeType 1" & Conc..ug.ml. > 0,
# same.scale = TRUE,
# log="xy",
# f=3/4,
# main="Detector=ProbeType 1",
# xlab="Concentration (ug/ml)",
# ylab="Relative Gene Quantification"
# )## Original function to interface
#
# ## so it can be used easily in a pipeline.
# rtPCR %>%
# ntbt_overplot(RQ ~ Conc..ug.ml. | Test.Substance,
# subset = Detector == "ProbeType 1" & Conc..ug.ml. > 0,
# same.scale = TRUE,
# log="xy",
# f=3/4,
# main="Detector=ProbeType 1",
# xlab="Concentration (ug/ml)",
# ylab="Relative Gene Quantification"
# )## Original function to interface
#
#
# ## ntbt_plotmeans: Plot Group Means and Confidence Intervals
# data(state)
# dta <- data.frame(state.abb, state.region)
#
# ## Original function to interface
# plotmeans(state.area ~ state.region, data = dta)
#
# ## The interface puts data as first parameter
# ntbt_plotmeans(dta, state.area ~ state.region)
#
# ## so it can be used easily in a pipeline.
# dta %>%
# ntbt_plotmeans(state.area ~ state.region)
# ## End(Not run)
Run the code above in your browser using DataLab