Learn R Programming

intubate (version 1.0.0)

gss: Interfaces for gss package for data science pipelines.

Description

Interfaces to gss functions that can be used in a pipeline implemented by magrittr.

Usage

ntbt_gssanova(data, ...) ntbt_gssanova0(data, ...) ntbt_gssanova1(data, ...) ntbt_ssanova(data, ...) ntbt_ssanova0(data, ...) ntbt_ssanova9(data, ...) ntbt_sscden(data, ...) ntbt_sscden1(data, ...) ntbt_sscox(data, ...) ntbt_ssden(data, ...) ntbt_ssden1(data, ...) ntbt_sshzd(data, ...) ntbt_ssllrm(data, ...)

Arguments

data
data frame, tibble, list, ...
...
Other arguments passed to the corresponding interfaced function.

Value

Object returned by interfaced function.

Details

Interfaces call their corresponding interfaced function.

Examples

Run this code
## Not run: 
# library(intubate)
# library(magrittr)
# library(gss)
# 
# 
# ## ntbt_gssanova: Fitting Smoothing Spline ANOVA Models with Non-Gaussian Responses
# data(bacteriuria)
# 
# ## Original function to interface
# gssanova(infect ~ trt + time, family="binomial", data = bacteriuria,
#          id.basis = (1:820)[bacteriuria$id %in% c(3,38)], random = ~ 1 | id)
# gssanova0(infect ~ trt + time, family="binomial", data = bacteriuria)
# gssanova1(infect ~ trt + time, family="binomial", data = bacteriuria,
#          id.basis = (1:820)[bacteriuria$id %in% c(3,38)], random = ~ 1 | id)
# 
# ## The interface puts data as first parameter
# ntbt_gssanova(bacteriuria, infect ~ trt + time, family="binomial",
#               id.basis = (1:820)[bacteriuria$id %in% c(3,38)], random = ~ 1 | id)
# ntbt_gssanova0(bacteriuria, infect ~ trt + time, family="binomial")
# ntbt_gssanova1(bacteriuria, infect ~ trt + time, family="binomial",
#                id.basis = (1:820)[bacteriuria$id %in% c(3,38)], random = ~ 1 | id)
# 
# ## so it can be used easily in a pipeline.
# bacteriuria %>%
#   ntbt_gssanova(infect ~ trt + time, family="binomial",
#                 id.basis = (1:820)[bacteriuria$id %in% c(3,38)], random = ~ 1 | id)
# bacteriuria %>%
#   ntbt_gssanova0(infect ~ trt + time, family="binomial")
# bacteriuria %>%
#   ntbt_gssanova1(infect ~ trt + time, family="binomial",
#                  id.basis = (1:820)[bacteriuria$id %in% c(3,38)], random = ~ 1 | id)
# 
# 
# ## ntbt_ssanova: Fitting Smoothing Spline ANOVA Models
# data(nox)
# 
# ## Original function to interface
# ssanova(log10(nox) ~ comp*equi, data = nox)
# ssanova0(log10(nox) ~ comp*equi, data = nox)
# 
# ## The interface puts data as first parameter
# ntbt_ssanova(nox, log10(nox) ~ comp*equi)
# ntbt_ssanova0(nox, log10(nox) ~ comp*equi)
# 
# ## so it can be used easily in a pipeline.
# nox %>%
#   ntbt_ssanova(log10(nox) ~ comp*equi)
# nox %>%
#   ntbt_ssanova0(log10(nox) ~ comp*equi)
# 
# 
# ## ntbt_ssanova9: Fitting Smoothing Spline ANOVA Models with Correlated Data
# x <- runif(100); y <- 5 + 3*sin(2*pi*x) + rnorm(x)
# dta <- data.frame(x, y)
# 
# ## Original function to interface
# ssanova9(y ~ x, data = dta, cov = list("arma", c(1, 0)))
# 
# ## The interface puts data as first parameter
# ntbt_ssanova9(dta, y ~ x, cov = list("arma", c(1, 0)))
# 
# ## so it can be used easily in a pipeline.
# dta %>%
#   ntbt_ssanova9(y ~ x, cov = list("arma", c(1, 0)))
# 
# 
# ## ntbt_sscden: Estimating Conditional Probability Density Using Smoothing Splines
# data(penny)
# 
# ## Original function to interface
# set.seed(5732)
# sscden(~ year*mil, ~ mil, data = penny, ydomain = data.frame(mil=c(49, 61)))
# sscden1(~ year*mil, ~ mil, data = penny, ydomain = data.frame(mil=c(49, 61)))
# 
# ## The interface puts data as first parameter
# set.seed(5732)
# ntbt_sscden(penny, ~ year*mil, ~ mil, ydomain = data.frame(mil=c(49, 61)))
# ntbt_sscden1(penny, ~ year*mil, ~ mil, ydomain = data.frame(mil=c(49, 61)))
# 
# ## so it can be used easily in a pipeline.
# set.seed(5732)
# penny %>%
#   ntbt_sscden(~ year*mil, ~ mil, ydomain = data.frame(mil=c(49, 61)))
# penny %>%
#   ntbt_sscden1(~ year*mil, ~ mil, ydomain = data.frame(mil=c(49, 61)))
# 
# 
# ## ntbt_sscox: Estimating Relative Risk Using Smoothing Splines
# data(stan)
# 
# ## Original function to interface
# sscox(Surv(futime, status) ~ age, data = stan)
# 
# ## The interface puts data as first parameter
# ntbt_sscox(stan, Surv(futime, status) ~ age)
# 
# ## so it can be used easily in a pipeline.
# stan %>%
#   ntbt_sscox(Surv(futime, status) ~ age)
# 
# 
# ## ntbt_ssden: Estimating Probability Density Using Smoothing Splines
# data(aids)
# ## rectangular quadrature
# quad.pt <- expand.grid(incu=((1:40)-.5)/40*100,infe=((1:40)-.5)/40*100)
# quad.pt <- quad.pt[quad.pt$incu<=quad.pt$infe,]
# quad.wt <- rep(1,nrow(quad.pt))
# quad.wt[quad.pt$incu==quad.pt$infe] <- .5
# quad.wt <- quad.wt/sum(quad.wt)*5e3
# 
# ## Original function to interface
# ssden(~ incu + infe, data = aids, subset = age >= 60,
#       domain = data.frame(incu = c(0, 100), infe=c(0, 100)),
#       quad = list(pt = quad.pt, wt = quad.wt))
# ssden1(~ incu + infe, data = aids, subset = age >= 60,
#        domain = data.frame(incu = c(0, 100), infe=c(0, 100)),
#        quad = list(pt = quad.pt, wt = quad.wt))
# 
# ## The interface puts data as first parameter
# ntbt_ssden(aids, ~ incu + infe, subset = age >= 60,
#            domain = data.frame(incu = c(0, 100), infe=c(0, 100)),
#            quad = list(pt = quad.pt, wt = quad.wt))
# ntbt_ssden1(aids, ~ incu + infe, subset = age >= 60,
#             domain = data.frame(incu = c(0, 100), infe=c(0, 100)),
#             quad = list(pt = quad.pt, wt = quad.wt))
# 
# ## so it can be used easily in a pipeline.
# aids %>%
#   ntbt_ssden(~ incu + infe, subset = age >= 60,
#              domain = data.frame(incu = c(0, 100), infe=c(0, 100)),
#              quad = list(pt = quad.pt, wt = quad.wt))
# aids %>%
#   ntbt_ssden1(~ incu + infe, subset = age >= 60,
#               domain = data.frame(incu = c(0, 100), infe=c(0, 100)),
#               quad = list(pt = quad.pt, wt = quad.wt))
# 
# 
# ## ntbt_sshzd: Estimating Hazard Function Using Smoothing Splines
# data(gastric)
# 
# ## Original function to interface
# sshzd(Surv(futime, status) ~ futime*trt, data = gastric)
# 
# ## The interface puts data as first parameter
# ntbt_sshzd(gastric, Surv(futime, status) ~ futime*trt)
# 
# ## so it can be used easily in a pipeline.
# gastric %>%
#   ntbt_sshzd(Surv(futime, status) ~ futime*trt)
# 
# 
# ## ntbt_ssllrm: Fitting Smoothing Spline Log-Linear Regression Models
# test <- function(x)
#         {.3*(1e6*(x^11*(1-x)^6)+1e4*(x^3*(1-x)^10))-2}
# x <- (0:100)/100
# p <- 1-1/(1+exp(test(x)))
# y <- rbinom(x,3,p)
# y1 <- as.ordered(y)
# y2 <- as.factor(rbinom(x,1,p))
# 
# dta <- data.frame(x, y1, y2)
# 
# ## Original function to interface
# ssllrm(~ y1*y2*x, ~ y1 + y2, data = dta)
# 
# ## The interface puts data as first parameter
# ntbt_ssllrm(dta, ~ y1*y2*x, ~ y1 + y2)
# 
# ## so it can be used easily in a pipeline.
# dta %>%
#   ntbt_ssllrm(~ y1*y2*x, ~ y1 + y2)
# ## End(Not run)

Run the code above in your browser using DataLab